Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 11.docx
Скачиваний:
8
Добавлен:
01.04.2025
Размер:
299.47 Кб
Скачать

9.3.2. Поляризация плоской электромагнитной волны

В электромагнитной волне, как волне поперечной электрические и магнитные поля колеблются в плоскости, перпендикулярной направлению распространения волны, т.е. перпендикулярно волновому вектору k. Однако направление колебаний векторов E и B в этой плоскости может быть произвольным. Поэтому для полного описания плоской поперечной монохроматической волны, кроме ее амплитуды, частоты и фазы, необходимо учитывать еще состояние ее поляризации, т.е. направление колебаний электрического E и связанного с ним магнитного B векторов. В этом проявляется векторный характер электромагнитной волны. Если вектор E волны все время колеблется только в одной плоскости, содержащей вектор k, ориентация которой фиксирована в пространстве, то такую волну называют плоско поляризованной. Ее называют также линейно поляризованной, так как если смотреть навстречу волне (навстречу вектору k), колебания вектора E в ней будем видеть происходящими вдоль одной линии, перпендикулярной направлению распространения волны. Линейная поляризация показана на рис. 1.2, а. Плоскость, в которой колеблется вектор E, называют плоскостью поляризации (иногда – плоскостью колебаний). В векторном виде колебания векторов E и B в плоской монохроматической волне можно записать как

Е(r, t) = e E00 cos ( tkr + ),

B(r, t) = n e B00 cos ( tkr + ).

Здесь e – вещественный единичный вектор, направленный вдоль направления колебаний электрического вектора E волны и называемый вектором поляризации.

Линейная поляризация не является единственным видом поляризации плоской монохроматической волны. Для определения других возможных поляризационных состояний учтем, что из уравнений Максвелла вытекает независимость волн с компонентами Ex, By и Ey, Bx. Это означает, что в общем случае плоская волна может быть представлена в виде суперпозиции двух линейно поляризованных волн с взаимно перпендикулярной ориентацией одноименных полей.

Рассмотрим суперпозицию двух плоских монохроматических волн одинаковой частоты, линейно поляризованных в двух взаимно перпендикулярных направлениях (например, в направлении осей X и Y) и распространяющихся в направлении оси Z. Тогда в каждой точке этой оси будет происходить сложение двух взаимно перпендикулярных колебаний одинаковой частоты:

.

В зависимости от разности фаз и соотношения амплитуд E01 и E02, получаются следующие виды поляризации: линейная поляризация (при = 0 или ), эллиптическая правая поляризация (при = / 2, E01E02), эллиптическая левая поляризация (при = – / 2, E01 E02), круговая правая поляризация (при = / 2, E01 = E02), круговая левая поляризация (при = = – / 2, E01 = E02). При эллиптической или круговой поляризации конец результирующего вектора E движется в плоскости XY по эллипсу или по кругу почасовой стрелке (если смотреть навстречу волне) при правой поляризации и против часовой стрелки – при левой. В пространстве в световой волне, поляризованной по кругу или эллипсу, конец вектора E описывает круговую или эллиптическую спираль, навертывающуюся на направление луча. Конец вектора магнитного поля волны B при этом также описывает эллипс или окружность в той же плоскости XY, в которой движется вектор E. При таких поляризациях векторы E и B в каждой точке z вращаются с угловой скоростью , оставаясь неизменными по модулю. Уравнения прямой, эллипса или окружности (в координатах Ex и Ey), как легко убедиться, получаются из приведенных выше формул для Ex и Ey при исключении из них параметра t.

а) б) в)

Рис. 1.2.

Эллиптическая поляризация является наиболее общим случаем поляризации электромагнитной волны. Она возникает при любой постоянной разности фаз . При разности фаз = / 2 получается эллипс, приведенный к осям координат. Все другие виды поляризации получаются при соответствующей разности фаз и соотношении между амплитудами E01 и E02.

Круговая и эллиптическая поляризации представлены соответственно на рис. 1. 2, б и 1.2, в. Показаны правые круговая и эллиптическая поляризации.

Поляризация, как и амплитуда, и фаза, является важной информационной характеристикой электромагнитной волны. Устройства для управления поляризацией волны называются поляризаторами.

Векторный характер составляющих электрического и магнитного поля световой электромагнитной волны имеет значение только при рассмотрении явлений, связанных с поперечностью электромагнитных волн таких, как поляризация, двойное лучепреломление и др.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]