Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
алгебра ответы на билеты2.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
4.85 Mб
Скачать

5. Линейная независимость столбцов (строк) матрицы. Теорема о ранге матрицы.

Линейная зависимость и независ.строк м-цы.Расм.прямоуг.м-цы Аmxn

l1=(a11,a12,a13,a14,..,a1n) – 1-я строка; l2=(a21,a22,a23,a24,..,a2n) – 2-я строка.

lm=(am,am2,am3,am4,..,amn) Линейной комбинацией строк м-цы наз-ся выраж. λ– «лямбда».

λ 1 * k1+ λ 2k2+… + λ m-1km -1+ λ mkm , где все λ -это числа.

Опред.:строки l1,l2,..,lm – линейно независимые,если их линейная комбинация равна нулевой строке,когда все числа λ =0 (λ 1=0, λ 2=0, λ 3=0,.. λ m=0). Если опред-ль А не=0, то строки линейно независимы.

Опр:строки l1,l2,l3,..lm-1,lm – лин.завис.,если их лин.комбинация = нулевой строке только, когда хотя бы одно из чисел λ 1, λ 2, λ m ≠0.

ТЕОР.о ранге м-цы. Ранг м-цы равен максимальному числу её лин.независ.строк или ст-в м-цы, через которые линейно выражаются все остальные её строки (ст-цы).

Пусть м-ца А размера mxn имеет ранг r(r≤min(m;n)). Это означает,что сущ-ет отличный от нуля минор r-го порядка. Всякий нулевой минор r-го порядка будет наз-ть базисным минором. Пусть для определённости это минор

|a11 a12 ... a1r|

|a21 a22 ... a2r|

∆= |... | ≠0.

|ar1 ar2 ... arr|

Тогда строки м-цы e1,e2,...,er линейно независимы. Предположим противное,т.е.одна из этих строк,напр. еr, явл-ся лин-й комбинацией остальных:

er1e12e2+...+λr-1er-1.

Вычтем из эл-тов r-й строки эл-ты 1-й строки,умноженные на λ1, эл-ты 2-й строки, умноженные на λ2, и т.д., наконец,эл-ты (r-1)-й строки,умнож-е на λr-1. При таких преобразованиях м-цы её опред-ль ∆ не изм-ся, но т.к. теперь r-я строка будет состоять из одних нулей, то ∆=0 – противоречие, и наше предполож.неверно.

6. Система п линейных уравнений с п переменными (общий вид). Матричная форма записи такой системы. Решение системы (определение). Совместные и несовместные, определенные и неопределенные системы линейных уравнений.

8. Система лин.Ур-ний:

Аmxn*Хnx1mx1 <=> (ф.1)

(a11x1+a12x2+…+ аnxn=b1

(a21x1+a21x2+… +a2nxn=b2

(….

(аmx1+а2mx2+… +аmnхn=bm

В матричной форме система имеет вид АХ=В, где

(а11 a12 ... a1n)

A= (a21 a22 ... a2n)

ф.2(... ... ... ... );

(am1 am2 .. amn)

(x1)

X= (x2)

ф.3 (....);

(xn)

(b1)

B= (b2)

ф.4(....);

(bm)

называются собственно матрицей системы, матрицами-столбцами переменных и свободных членов.

Решение системы:а)методом обр.м-цы. Ур-е в матричной ф-ме имеет вид АХ+В. Найти обр.м-цу. И найдём Х по ф-ле Х=А-1В,(т.е.х123.)

б)По ф-ле Крамера. Найти определитель системы ^=|A|. Если он не=0,то сист.имеет единств.реш. Далее вычислить опред-ли м-ц ^1,^2,^3,полученных их м-цы А,заменой соотв-но 1-го,2-го и 3-го ст-цов столбцом своб.членов. Далее по ф-лам Крамера:х1=^1/^, х2=^2/^, х3=^3/^.

Расширенной м-цей системы наз.м-ца (А|В),полученная из м-цы сист.А добавлением к ней ст-ца членов этой системы,т.е. (А|В)=(ф.2|ф.4)

Теорема Кронекера-Капелли. Сист.лин.ур-й совмест.тог.и т.тог,ког.ранг м-цы сист.А равен рангу расшир.м-цы (А|B) этой с-мы.

r<m – ур-я с-мы(строки расш.м-цы)зависимые;

r=m –ур-я с-мы (стр.расш.м.)независимые;

r(A)не=r(A|B)- с-ма несовм-ная;

r(A)=r(A|B)=r – с-ма совм-ная;

r<n – с-ма неопред.(бескон.мн.реш.);

r=n – с-ма опред-ная (единств.реш.)

Если у сист.ур-ния есть реш-е,то такая система совместна,если решения ур-я нет, то не совместная.

Если система лин.ур-й имеет единств.решение Х=(х12,…хn),то такая сист.наз.определённой. Если СЛУ имеет больше, чем одно реш-е,то такая сист.не определённая.