
- •1.Понятие матрицы. Виды матриц. Транспонирование матрицы. Равенство матриц. Алгебраические операции над матрицами: умножение на число, сложение, умножение матриц.
- •2. Определители 2, 3 и n-го порядков (определения и их свойства). Теорема Лапласа о разложении определителя по элементам строки или столбца.
- •3.Квадратная матрица и ее определитель. Особенная и неособенная квадратные матрицы. Присоединенная матрица. Матрица, обратная данной, и алгоритм ее вычисления.
- •4. Понятие минора k-го порядка. Ранг матрицы (определение). Вычисление ранга матрицы с помощью элементарных преобразований. Пример.
- •5. Линейная независимость столбцов (строк) матрицы. Теорема о ранге матрицы.
- •8. Система лин.Ур-ний:
- •7. Метод Гаусса решения системы n линейных уравнений с п переменными. Понятие о методе Жордана – Гаусса.
- •17.Определение оператора. Понятие линейного оператора. Образ и прообраз векторов.
5. Линейная независимость столбцов (строк) матрицы. Теорема о ранге матрицы.
Линейная зависимость и независ.строк м-цы.Расм.прямоуг.м-цы Аmxn
l1=(a11,a12,a13,a14,..,a1n) – 1-я строка; l2=(a21,a22,a23,a24,..,a2n) – 2-я строка.
lm=(am,am2,am3,am4,..,amn) Линейной комбинацией строк м-цы наз-ся выраж. λ– «лямбда».
λ 1 * k1+ λ 2k2+… + λ m-1km -1+ λ mkm , где все λ -это числа.
Опред.:строки l1,l2,..,lm – линейно независимые,если их линейная комбинация равна нулевой строке,когда все числа λ =0 (λ 1=0, λ 2=0, λ 3=0,.. λ m=0). Если опред-ль А не=0, то строки линейно независимы.
Опр:строки l1,l2,l3,..lm-1,lm – лин.завис.,если их лин.комбинация = нулевой строке только, когда хотя бы одно из чисел λ 1, λ 2, λ m ≠0.
ТЕОР.о ранге м-цы. Ранг м-цы равен максимальному числу её лин.независ.строк или ст-в м-цы, через которые линейно выражаются все остальные её строки (ст-цы).
Пусть м-ца А размера mxn имеет ранг r(r≤min(m;n)). Это означает,что сущ-ет отличный от нуля минор r-го порядка. Всякий нулевой минор r-го порядка будет наз-ть базисным минором. Пусть для определённости это минор
|a11 a12 ... a1r|
|a21 a22 ... a2r|
∆= |... | ≠0.
|ar1 ar2 ... arr|
Тогда строки м-цы e1,e2,...,er линейно независимы. Предположим противное,т.е.одна из этих строк,напр. еr, явл-ся лин-й комбинацией остальных:
er=λ1e1+λ2e2+...+λr-1er-1.
Вычтем из эл-тов r-й строки эл-ты 1-й строки,умноженные на λ1, эл-ты 2-й строки, умноженные на λ2, и т.д., наконец,эл-ты (r-1)-й строки,умнож-е на λr-1. При таких преобразованиях м-цы её опред-ль ∆ не изм-ся, но т.к. теперь r-я строка будет состоять из одних нулей, то ∆=0 – противоречие, и наше предполож.неверно.
6. Система п линейных уравнений с п переменными (общий вид). Матричная форма записи такой системы. Решение системы (определение). Совместные и несовместные, определенные и неопределенные системы линейных уравнений.
8. Система лин.Ур-ний:
Аmxn*Хnx1=Вmx1 <=> (ф.1)
(a11x1+a12x2+…+ аnxn=b1
(a21x1+a21x2+… +a2nxn=b2
(….
(аmx1+а2mx2+… +аmnхn=bm
В матричной форме система имеет вид АХ=В, где
(а11 a12 ... a1n)
A= (a21 a22 ... a2n)
ф.2(... ... ... ... );
(am1 am2 .. amn)
(x1)
X= (x2)
ф.3 (....);
(xn)
(b1)
B= (b2)
ф.4(....);
(bm)
называются собственно матрицей системы, матрицами-столбцами переменных и свободных членов.
Решение системы:а)методом обр.м-цы. Ур-е в матричной ф-ме имеет вид АХ+В. Найти обр.м-цу. И найдём Х по ф-ле Х=А-1В,(т.е.х1,х2,х3.)
б)По ф-ле Крамера. Найти определитель системы ^=|A|. Если он не=0,то сист.имеет единств.реш. Далее вычислить опред-ли м-ц ^1,^2,^3,полученных их м-цы А,заменой соотв-но 1-го,2-го и 3-го ст-цов столбцом своб.членов. Далее по ф-лам Крамера:х1=^1/^, х2=^2/^, х3=^3/^.
Расширенной м-цей системы наз.м-ца (А|В),полученная из м-цы сист.А добавлением к ней ст-ца членов этой системы,т.е. (А|В)=(ф.2|ф.4)
Теорема Кронекера-Капелли. Сист.лин.ур-й совмест.тог.и т.тог,ког.ранг м-цы сист.А равен рангу расшир.м-цы (А|B) этой с-мы.
r<m – ур-я с-мы(строки расш.м-цы)зависимые;
r=m –ур-я с-мы (стр.расш.м.)независимые;
r(A)не=r(A|B)- с-ма несовм-ная;
r(A)=r(A|B)=r – с-ма совм-ная;
r<n – с-ма неопред.(бескон.мн.реш.);
r=n – с-ма опред-ная (единств.реш.)
Если у сист.ур-ния есть реш-е,то такая система совместна,если решения ур-я нет, то не совместная.
Если система лин.ур-й имеет единств.решение Х=(х1,х2,…хn),то такая сист.наз.определённой. Если СЛУ имеет больше, чем одно реш-е,то такая сист.не определённая.