
- •1. Основные понятия тер. Вер. Эксперимент и его пространство элементарных событий
- •2. Классификация событий. Действия над событиями
- •3. Классическое определение вер-ти, геометрическое и статистическое определение вер-ти
- •4. Элементы комбинаторики (принцип перемещения, перестановки, размещения, сочетания)
- •5. Теорема сложения вероятностей («или»)
- •6. Условная вероятность, зависимость и независимость события. Умножение вероятностей («и»)
- •7. Формула полной вероятности
- •8. Формула Байеса
- •9. Последовательность независимых испытаний. Формула Бернулли
- •10. Предельный переход для формулы Бернулли
- •11. Теорема Пуассона. Простейший поток событий, его свойства
- •12. Св. Закон распределения св
- •13. Дсв, их законы распределения
- •14. Числовые характеристики дсв
- •15. Нсв. Их законы распределения.
- •16. Свойства мат.Ожидания
- •17. Свойства дисперсии
- •18. Биномиальное распределение
- •19. Распределение Пуассона
- •20. Геометрическое распределение
- •25. Плотность распределения непрерывной двум. Св, св-ва
- •26. Двум. Св, равномерно распределенная в прямоугольнике
- •27. Условные законы распределения
- •28. Зависимые, независимые св
- •29. Числовые характеристики двумерной св
- •30. Корреляционный момент. Коэффициент корреляции
- •31. Линейная зависимость двух св
- •32. Условные числовые характеристики, составляющих двумерную св. Регрессия
- •33. Закон распределения функции св
- •34. Понятие о збч. Сходимость по вер-сти и распределению
- •35. Неравенство Маркова, Чебышева
- •36. Теорема Чебышева
- •37. Теорема Бернулли
- •38. Центральная предельная теорема( Ляпунова)
- •39. Генеральная совокупность, выборка. Способы организации выборки, требования к выборке
- •40. Вариационный ряд. Полигон частот
- •41. Построение интервального вариационного ряда. Гистограмма
- •42.Эмперическая функция распределения, ее свойства
- •43. Числовые характеристики выборочной совокупности, их свойства
- •44. Понятие о статистических гипотезах и их проверке
- •45. Точечные оценки параметров закона распределения. Требования к оценкам параметров
- •46. Оценка мат.Ожидания и дисперсии
- •47. Метод наибольшего правдоподобия и метод моментов нахождения оценок параметров
- •48. Интервальные оценки параметров распределения. Доверительный интервал и вероятность
43. Числовые характеристики выборочной совокупности, их свойства
44. Понятие о статистических гипотезах и их проверке
Статистическая гипотеза - любое предположение о виде или параметрах неизвестного з-на р-я. Различают простую и сложную статистич гипотезы. Простая гипотеза, в отличие от сложной, полностью определяет теоретическую ф-ю р-я случ велич. Проверяемую гипотезу наз-тся нулевой (или основной) и обозначают Н0. Наряду с нулевой гипотезой рассматривают конкурирующую, гипотезу Н1, являющуюся логическим отрицанием Н0. Н0 и Н1 - две возможности выбора, осуществляемого в задачах проверки статистических гипотез. Суть проверки статистической гипотезы: находится характеристика θn – по выборке, θ критическое. Если θn>θкр – Н0 отвергается, наоборот – принимается. Вер-сть α допустить ошибку 1-го рода, т.е. отвергнуть гипотезу, когда она верна, называется уровнем значимости. Вер-сть допустить ошибку 2-го рода, т.е. принять гипотезу, когда она неверна, обычно обозначают β. Вер-сть (1-β) не допустить ошибку 2-го рода, т.е. отвергнуть гипотезу Н0, когда она неверна, наз-тся мощностью критерия.
45. Точечные оценки параметров закона распределения. Требования к оценкам параметров
Во
многих случаях мы располагаем
информацией о виде закона распределения
случайной величины (нормальный,
бернуллиевский, равномерный и т. п.), но
не знаем параметров этого распределения,
таких как Mх, Dх. Для определения этих
параметров применяется выборочный
метод. Пусть выборка объема n представлена
в виде вариационного ряда. Назовем
выборочной средней величину
46. Оценка мат.Ожидания и дисперсии
Для
оценки математического ожидания чаще
всего применяется оценка.
47. Метод наибольшего правдоподобия и метод моментов нахождения оценок параметров
Задача выборочного метода является оценка параметров ген. совок-сти по данным выборки. Оценкой θn параметра θ называют всякую функцию результатов наблюдений над случайной величиной X, с помощью которой судят о значении параметра θ. Поскольку Х1, Х2,..., Хn - случ вел, то и оценка θn (в отличие от оцениваемого параметра θ - величины неслучайной) является случ вел, зависящей от з-на р-я X и числа n. Св-ва оценок: Оценка θn параметра θ наз-тся несмещенной, если ее мат ожидание равно оцениваемому параметру. В противном случае оценка наз-ся смещенной. Несмещенная оценка наз-тся эффективной, если она имеет наименьшую дисперсию среди всех возможных несмещенных оценок параметра θ, вычисленных по выборкам одного и того же объема n. Методы нахождения оценок: 1)Метод моментов - определ-е кол-во выборочных моментов (начальных νk или центральных моментов μk, или тех и других) приравнивается к соответствующим теоретич-м моментам р-я сл вел X. νk=∑Xik *pi, μk=∑(Xi-M(X))kpi. 2)Метод max правдоподобия – выражает плоность вер-сти совместного появления результатов выборки х1, Х2,..., хn: L(x1, x2,…xi…xn; θ)=φ(x1,θ)*φ(x2,θ)…φ(xi,θ)…φ(xn, θ). Исследуем ф-я на max и min. Для этого исслед-ся ln (L(θ)). D lnL\dθ=0 – находим θ0; d^2lnL\dθ – если <0 – то max, тогда θ= θ0.