
- •Работа 1. Основные понятия промышленной токсикологии
- •1.1. Общие сведения об исследования токсичности
- •1.2. Ориентировочная оценка токсичности веществ по некоторым химическим и физико-химическим свойствам
- •1.3. °Оценка токсичности веществ в условиях острого воздействия
- •1.3.1. Средние смертельные дозы и концентрации
- •1.4. °Оценка кумулятивного действия
- •1.5.°Оценка токсичности веществ в условиях хронического воздействия
- •1.6.° Гигиеническое нормирование веществ
- •1.7.°Контрольные вопросы и задания
- •2.1. °Примеры изучения токсикологических показателей
- •2.1.1 Токсичность азокрасителей
- •2.1.2 Токсичность нитросоединений
- •2.1.3 Токсичность поверхностноактивных веществ
- •2.2.°Оценка кумулятивных свойств по различным методикам
- •2.3.° Пример решения типовой задачи [5]
- •2.4.° Контрольные вопросы и задания
- •Работа 3. Антидоты
- •3.1.° Определение антидота
- •3.2.°Действие антидотов при отравлении ядами–метгемоглобинобразователями и цианидами
- •3.2.1. Клиническая картина отравления цианидами и мго
- •3.2.2. Антидоты
- •3.3.° Строение метиленового синего и его восстановленной формы
- •3.4.° Контрольные вопросы и задания
- •Работа 4. Сильнодействующие и ядовитые вещества
- •4.1.° .Поступление токсичных веществ
- •4.1.1 Ингаляция
- •4.1.2. Кожно–резорбтивные поражения
- •4.1.3. Поражения желудочно–кишечного тракта (проглатывание)
- •4.1.4. Поражения глаз
- •4.2.° Первые действия. Сортировка пострадавших
- •4.3.°Принципы обработки
- •4.3.1. Общие сведения об орработке
- •4.3.2. Повторное заражение и деконтаминация
- •4.3.3. Особенности оказания помощи при некоторых видах поражений
- •4.4.° Контрольные вопросы и задания
- •Работа 5. Токсикологические основы радиационной безопасности
- •5.1.° Общие сведения
- •5.2.° Радиация и радиоактивность
- •5.3.°Воздействие радиации
- •5.4.°Риски отдаленных последствий
- •5.5 °Основные понятия дозиметрии
- •5.5.1. Активность
- •5.5.2. Экспозиционная доза
- •5.5.3. Поглощенная доза
- •5.5.4.Эквивалентная доза
- •5.5.5. Эффективная эквивалентная доза
- •5.5.6. Коллективная эффективная эквивалентная доза
- •5.6. °Нормы радиационной безопасности сп 2.6.1.758-99 (нрб-99)
- •5.6.1. Пределы доз облучения
- •5.6.2. Допустимое поступление радионуклидов через воздух, воду, продукты питания
- •5.6.3. Санитарная оценка степени загрязнения
- •5.6.4. Предупреждения развития радиационной аварии или ограничение ее последствий
- •5.6.5. Радиационные воздействия в медицине
- •5.7.°Основные санитарные нормы и правила обеспечения радиационной безопасности сп 2.6.1.799-99 (оспорб-2000)
- •5.8.°Контрольные вопросы и задания
- •6. Библиографический список
5.3.°Воздействие радиации
В зависимости от уровня организации и структуры вовлекаемого в изменение наследственного материала все спонтанные и индуцированные генетические нарушения (мутации) можно разделить следующим образом:
1. изменения внутри отдельных генов, т.е. генные мутации в узком смысле этого слова, "точковые" мутации.
2. хромосомные мутации (перестройки, аберрации) - изменения в числе и структуре хромосом. Последние (структурные) связаны непосредственно с поражением ДНК, несущей наследственную информацию, а изменения в числе хромосом возникают в результате повреждения полностью или частично аппарата распределения хромосом по дочерним ядрам при делении клеток.
Изменения в генетическом аппарате могут вести как к летальным эффектам (гибель соматических и зародышевых клеток и эмбрионов), так и к наследуемой "трансформации" клеток и/или всего организма (канцерогенез, наследственные болезни). «Уязвимость» клеток меняется со временем и максимальна во время клеточного деления, так как выше вероятность мутаций. Поэтому при равных воздействиях последствия будут тяжелее для тканей с высокой скоростью деления клеток.
Роль биологического времени и мутации в соматических и в половых клетках имеют разное значение. В первом случае наследование мутаций и проявление происходит в пределах одного данного облученного организма, а во втором они проявляются в последующих поколениях или отражаются на рождаемости, т.е. дают генетические эффекты в узком смысле этого слова.
Экспериментальные исследования (выполненные в основном на мышах) позволили сформулировать некоторые положения классической радиационной генетики по отношению к млекопитающим.
1. Радиационное воздействие не приводит к появлению каких-либо новых биологических феноменов, которые не возникали бы спонтанно, происходит лишь увеличение вероятности их возникновения.
2. Для индукции мутаций в какой-либо определенной соматической или половой клетке, она должна подвергнуться прямому воздействию радиации, является хорошим приближением к реальной ситуации. Именно поэтому сильное поглощение некоторых видов излучений (альфа- и бета-частиц, УФ-лучей, очень низкоэнергетических рентгеновских лучей) поверхностными тканями (эпидермисом кожи, тканями глаза) предотвращает их опасное воздействие на половые или, например, кроветворные клетки организма. Однако они могут продуцировать соматические мутации в клетках кожи и глаз.
3. Характер зависимости частоты генетических повреждений в клетках от дозы определяется тем, происходит ли мутационное событие в результате однократного попадания или для этого требуется два события повреждения ДНК, причем они не обязательно должны осуществляться в результате прохождения двух отдельных частиц/фотонов, а могут индуцироваться и одной частицей/фотоном. Соответственно, в первом случае теоретически предполагается линейная зависимость доза-эффект: во втором — нелинейная.
Отношение приращения дозы к интервалу времени называется мощностью дозы. Линейный характер зависимости доза-эффект наблюдается, если высокие мощности радиации вызывают много актов ионизации/возбуждения в небольшом объеме, что приводит к множественному поражению генетических структур даже при прохождении через ядро единичной частицы и возникновению условий для взаимодействия первичных повреждений с их последующей фиксацией в виде определенных мутационных изменений. В случае нелинейной дозовой зависимости для появления мутации необходимо взаимодействие двух повреждений.
Кроме того, при низких мощностях доз возрастает значение процессов репарации повреждений. Эти явления приводят к возникновению эффекта мощности дозы, в соответствии с которым считается, что определенная доза, данная с более низкой мощностью дозы вызывает меньше мутаций, чем та же доза при более высокой мощности дозы.