
Добавил:
Upload
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз:
Предмет:
Файл:ММИОв экономике_2006.doc
X
- •Учебное пособие
- •Оглавление
- •1. Введение в исследование операций 6
- •2. Элементы линейной алгебры 27
- •3. Линейное программирование 66
- •4. Теория двойственности в линейном программировании 143
- •5. Целочисленные модели исследования операций 181
- •6. Экономические задачи, сводящиеся к транспортной модели 219
- •Введение в исследование операций
- •1.1. Этапы исследования операций
- •Домашнее задание №1
- •2. Элементы линейной алгебры
- •2.1. Алгебра матриц
- •2.1.1. Виды матриц
- •2.1.2. Действия над матрицами
- •Домашнее задание №2
- •2.2. Вычисление определителей
- •Домашнее задание №3
- •2.3. Решение систем алгебраических уравнений
- •2.3.1. Основные понятия и определения
- •2.3.2. Формулы крамера и метод обратной матрицы
- •2.3.3. Метод жордана-гаусса
- •Домашнее задание №5
- •2.4. Векторное пространство
- •2.4.2. Размерность и базис векторного пространства
- •Домашнее задание №6
- •2.5. Решение задач линейной алгебры с помощью ms excel
- •3. Линейное программирование
- •3.1. Постановки задачи линейного программирования
- •3.1.1. Общая постановка задачи линейного программирования
- •3.1.2. Основная задача линейного программирования
- •3.1.3. Каноническая задача линейного программирования
- •3.2. Графический метод решения злп
- •Домашнее задание №7
- •Домашнее задание №8
- •3.3. Анализ решения (модели) на чувствительность
- •Домашнее задание №9
- •3.4. Решение линейных моделей симплекс-методом.
- •Переход от одной к-матрицы злп к другой к-матрице
- •Алгоритм симплекс-метода
- •Домашнее задание №10
- •3.4. Двойственный симплекс-метод (р-метод)
- •Определение р-матрицы злп
- •Условия перехода от одной р-матрицы злп к другой
- •Алгоритм р-метода
- •Решение задач р-методом
- •Домашнее задание №11
- •Домашнее задание №12
- •3.5. Решение злп двухэтапным симплекс-методом
- •Первый этап - решение вспомогательной задачи
- •Второй этап - решение исходной задачи
- •Домашнее задание №13
- •3.6. Решение злп с помощью ms excel
- •4. Теория двойственности в линейном программировании
- •4.1. Определение и экономический смысл двойственной злп
- •4.2. Основные положения теории двойственности
- •Получение оптимального плана двойственной задачи на основании теоремы 4
- •На первой итерации получен оптимальный план злп (4.24).
- •4.3. Анализ решения злп с помощью теории двойственности
- •4.4. Анализ решения злп на основе отчётов ms excel
- •Вариант 1
- •Вариант 2
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •5. Целочисленные модели исследования операций
- •5.1. Метод ветвей и границ решения целочисленных задач линейного программирования (цзлп)
- •X1, х2 0, целые.
- •Подробное описание метода
- •5.2. Задача коммивояжера
- •Применение метода ветвей и границ для решения задачи коммивояжера
- •Ветвление
- •Построение редуцированных матриц и и вычисление оценок снизу
- •Формирование списка кандидатов на ветвление
- •6. Экономические задачи, сводящиеся к транспортной модели
- •6.1.Транспортная задача линейного программирования
- •Методы составления первоначальных опорных планов
- •Метод потенциалов решения транспортной задачи
- •Проверка выполнения условия оптимальности для незанятых клеток
- •Выбор клетки, в которую необходимо поместить перевозку
- •Построение цикла и определение величины перераспределения груза
- •Проверка нового плана на оптимальность
- •Определение оптимального плана транспортных задач, имеющих некоторые усложнения в их постановке
- •6.2.Экономические задачи, сводящиеся к транспортной модели
- •Оптимальное распределение оборудования
- •Формирование оптимального штата фирмы
- •Задача календарного планирования производства
- •Модель без дефицита
- •Модель с дефицитом
- •6.3.Задача о назначениях
- •Венгерский алгоритм
- •Оптимальное исследование рынка
- •Оптимальное использование торговых агентов
- •Основная литература
- •Дополнительная литература.
Дополнительная литература.
Таха Х. “Введение в исследование операций”. М.:ИД”Вильямс”, 2001
Эддоус М., Стэнсфилд Р. "Методы принятия решений". М.: Юнити, 1997.
Мастяева И.Н., Горбовцов Г.Я., Семенихина О.Н., Турундаевский В.Б "Прикладная математика”. М.:МЭСИ, 2000.
Васильков Ю.В., Василькова Н.Н. Компьютерные технологии вычислений в математическом моделировании. М.: Финансы и статистика, 1999.
1
Число n! называется
факториалом числа n
и вычисляется по формуле:
Например,
1 См. определение в §2.2.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]