Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Gia_20.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
242.71 Кб
Скачать
    1. Эксцентрисистет гиперболы

Определение.Эксцентриситетом гиперболы называется отношение с ⁄ а, где с — половина расстояния между фокусами, а — действительная полуось гиперболы.  Эксцентриситет гиперболы (как и эллипса) обозначим буквой ε. Так как с > а: то ε > 1, т. е. эксцентриситет гиперболы больше единицы. Очевидно,

Из последнего равенства легко получается геометрическое истолкование эксцентриситета гиперболы. Чем меньше эксцентриситет, т. е. чем ближе он к единице, тем меньше отношение b ⁄a, а это означает, что основной прямоугольник более вытянут в направлении действительной оси. Таким образом, эксцентриситет гиперболы характеризует форму ее основного прямоугольника, а, значит, и форму самой гиперболы.  В случае равносторонней гиперболы ( a = b) имеем

Определение. Две прямые, перпендикулярные действительной оси гиперболы и расположенные симметрично относительно центра на расстоянии а ⁄ ε от него, называются директрисами гиперболы (здесь а — действительная полуось, ε — эксцентриситет гиперболы).   Аналогично случаю эллипса доказывается теорема: если г — расстояние от произвольной точки М гиперболы до какого-нибудь фокуса, d — расстояние от той же точки до соответствующей этому фокусу директрисы, то отношение r ⁄ d есть величина постоянная, равная эксцентриситету гиперболы.  Установленное свойство эллипса и гиперболы можно положить в основу общего определения этих линий: множество точек, для которых отношение расстояний до фокуса и до соответствующей директрисы является величиной постоянной, равной ε , есть эллипс, если ε < 1, и гипербола, если ε > 1.

16.Полярные уравнения эллипса гиперболы и параболы

Полярное уравнение, общее по форме для эллипса, одной ветви гиперболы и параболы, имеет вид

где

  • полярные координаты произвольной точки линии, р - фокальный параметр (половина фокальной хорды линии, перпендикулярной к ее оси),   - эксцентриситет (в случае параболы  ). Полярная система координат при этом выбрана так, что полюс находится в фокусе, а полярная ось направлена по оси линии в сторону, противоположную ближайшей к этому фокусу директрисы.

18.Общее уравнение плоскости

В декартовых координатах каждая плоскость определяется уравнением первой степени и каждое уравнение первой степени определяет плоскость.

Всякий (не равный нулю) вектор, перпендикулярный к данной плоскости, называется ее нормальным вектором. Уравнение

о пределяет плоскость, проходящую через точку

и имеющей нормальный вектор

Р аскрывая в уравнении (1) скобки и обозначая число

б уквой D, представим его в виде

Э то уравнение называется общим уравнением плоскости.

20.Угол между плоскостями. Условие параллельности и перпендикулярности плоскостей

УГОЛ МЕЖДУ ПЛОСКОСТЯМИ

Рассмотрим две плоскости α1 и α2, заданные соответственно уравнениями:

П од углом между двумя плоскостями будем понимать один из двугранных углов, образованных этими плоскостями. Очевидно, что угол между нормальными векторами n1 и n2 плоскостей α1 и α2 равен одному из указанных смежных двугранных углов 

П оэтому 

Т .к.

И

т о

Условие параллельности двух плоскостей.

Две плоскости α1 и α2 параллельны тогда и только тогда, когда их нормальные векторы n1 и n2 параллельны, а значит

Итак, две плоскости параллельны друг другу тогда и только тогда, когда коэффициенты при соответствующих координатах пропорциональны:

Условие перпендикулярности плоскостей.

Ясно, что две плоскости перпендикулярны тогда и только тогда, когда их нормальные векторы перпендикулярны, а следовательно, n1*n2 = 0 или A1A2 + B1B2 + C1C2 = 0

Таким образом,

P.S. Примеры тут:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]