Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
нормальная шпора по метео - Ковалёва Екатерина Михайловна.doc
Скачиваний:
82
Добавлен:
24.05.2014
Размер:
296.96 Кб
Скачать

22. Альбедо. Встречное излучение. Эффективное излучение.

Альбедо Земли Процентное отношение солнечной радиации, отданной земным шаром (вместе с атмосферой) обратно в мировое пространство, к солнечной радиации, поступившей на границу атмосферы. Отдача солнечной радиации Землей слагается из отражения от земной поверхности, рассеяния прямой радиации атмосферой в мировое пространство (обратного рассеяния) и отражения от верхней поверхности облаков. А. 3. в видимой части спектра (визуальное)—около 40%. Для интегрального потока солнечной радиации интегральное (энергетическое) А. 3. около 35%. В отсутствие облаков визуальное А. 3. было бы около 15%.

Излучение земной поверхности - тепловое инфракрасное, не воспринимаемое глазом излучение земной поверхности с длинами волн от 3 до 80 мкм. Поток собственного излучения земной поверхности направлен вверх и почти целиком поглощается атмосферой, нагревая ее. За счет собственного излучения земная поверхность теряет тепло. Атмосфера Земли поглощает земное излучение и снова возвращает большую его часть к Земле (встречное излучение).

Эффективное излучение земной поверхности - разность собственного излучения земной поверхности и поглощенного ею встречного излучения атмосферы.

23.Тепловой баланс земной поверхности

Тепловой баланс земной поверхности - алгебраическая сумма всех видов прихода и расхода тепла на поверхность суши и океана. Характер теплового баланса и его энергетический уровень определяют особенности и интенсивность большинства экзогенных процессов. Основными составляющими теплового баланса океана являются:

- радиационный баланс;

- затрата тепла на испарение;

- турбулентный теплообмен между поверхностью океана и атмосферой;

- вертикальный турбулентный теплообмен поверхности океана с нижележащими слоями; и

- горизонтальная океаническая адвекция.

24. Теплопроводность почвы. Законы Фурье.

Пористость — порошкообразное измельчение массы — сильно затрудняет проведение тепла в почве, так как прикосновение отдельных частичек ее в высшей степени несовершенно, а лежащий между ними воздух обладает очень слабою теплопроводимостью. Влияние воды на передачу тепла в глубь почвы может быть разъяснена двумя следующими случаями. Во-первых, если почва только влажна, т. е. все водяные частички удерживаются большой капиллярной силой, вследствие чего затрудняется их циркуляция, то вода не может играть заметной роли при распределении теплоты в такой почве. В этом случае влажная почва относительно распределения теплоты по почвенным слоям будет действовать почти как сухая, т. е. как дурной проводник теплоты.

Теплопроводность влажной почвы больше, чем сухой, так как вода до некоторой степени вытесняет частицы воздуха, обладающие наислабейшею способностью проводить теплоту; притом почва теряет и свою пористость. Во-вторых, если почва настолько мокрая, что вода до некоторой степени может циркулировать, то подобная почва при нагревании сверху не передает нагретых водяных частичек в более глубокие горизонты; они находятся уже в положении самом благоприятном — устойчивого равновесия. Но если почва будет охлаждаться сверху, вследствие ли холодного ветра или лучеиспускания в мировое пространство, то охлажденные верхние частички жидкости получат стремление опускаться вниз, на место более теплых и глубже лежащих; вследствие чего охлаждение почвы будет чувствоваться на большей глубине, чем нагревание ее, но именно потому, что при охлаждении почвы участвуют большие массы частичек воды, в ней не обнаруживаются при этом такие крайности, как при противоположном явлении.

Перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия составляющих его частиц. Приводит к выравниванию температуры тела. Обычно количество переносимой энергии, определяемое как плотность теплового потока, пропорционально градиенту температуры -закон Фурье.