- •Архитектура аппаратных средств.
- •1.2. Классификация элементов эвм.
- •1.3. Базовые логические элементы "и", "или", "не"
- •1.3.1. Элемент и
- •1.3.2. Элемент или
- •1.3.3. Элемент не
- •Исключительное или
- •Элемент и-не
- •Элемент или-не
- •Стрелка Пирса и штрих Шеффера. Стрелка Пирса
- •Штрих Шеффера
- •Архитектура фон Неймана.
- •Гарвардская архитектура.
- •Классическая гарвардская архитектура
- •Классифиация архитектур аппаратных средств.
- •Архитектура процессоров - cisc.
- •Архитектура процессоров - risc.
- •Сферы применения многоядерных процессоров
- •Основные классы многоядерных процессоров (many-core, multi-core, mimd, simd, smp, mmp)
- •Ячеистые" процессоры компании Tilera Процессоры Tile-64/64Pro
- •Семейство процессоров Tile-Gx
- •Процессор csx700
- •Краткие итоги
- •Архитектура процессоров seAforth
- •Структура графического процессора g80
- •Модель программирования cuda
- •Основные идеи архитектуры atac
- •Ключевые элементы технологии атас
- •Структура межъядерных связей
- •Передача данных и согласование кэш-памяти
- •Общая характеристика мультиядерных arm-процессоров
- •Серия Cortex-a mpCore
- •Состав, устройство и принцип действия основной памяти
- •Основная память
- •Статические элементы памяти
- •Программируемые зу
- •Сверхоперативная память
- •Ассоциативная память
- •Общие принципы функционирования кэш-памяти
- •Механизм сохранения информации в кэш-памяти
- •Типы кэш-памяти
- •Кэширование с обратной записью.
- •Организация внутренней кэш-памяти микропроцессора
- •Управление работой кэш-памяти на уровне страниц
- •Обеспечение согласованности кэш-памяти микропроцессоров в мультипроцессорных системах
- •Базовая система ввода-вывода (bios). Понятие cmos ram
- •Как bios управляет работой оборудования
- •Звуковые сигналы bios
- •Производитель ami
- •Производитель award
- •Системная, материнская плата
- •Цпу (Центральное процессорное устройство).
- •Архитектура графической подсистемы пк
- •Дисплеи
- •Дисплеи на элт
- •Жидкокристаллические дисплеи
- •Другие типы дисплеев
- •Принцип действия
- •Проекторы
- •Звуковая карта
- •Звуковые карты на шине pci.
- •Встроенный в системную плату ас’97_кодек.
- •Звуковые адаптеры и игры
- •Основные параметры и функции звуковых карт.
- •Блок питания.
- •Принтеры
- •Матричные принтеры
- •Струйные принтеры
- •Лазерные принтеры
Основные идеи архитектуры atac
Процессорная архитектура АТАС предусматривает решение этих проблем путем организации оптической сети вместо электрических каналов и шин. Проект нацелен на интеграцию оптоэлектронных компонент со стандартными КМОП-схемами. АТАС предусматривает частотное мультиплексирование — передачу сигналов на различных длинах волн — до 64 частотно разнесенных каналов. Оптические линии помимо прочего передают данные на более высоких скоростях, чем электрические линии (функция коэффициента преломления света в сравнении с задержками RC-цепей, диэлектрик, окружающий связи, и задержка, необходимая для ретрансляции электрического сигнала).
Оптические сигналы также могут требовать меньше мощности, чем электрические сигналы (особенно для длинных расстояний), за счет меньших потерь и отсутствия необходимости повторения сигналов.
Рис. 7.1. АТАС-архитектура
Архитектура АТАС базируется на возможности нанооптики создавать высокопроизводительные, глобальные накристальные сети с низкой задержкой распространения сигнала. Сеть состоит из оптического канала, охватывающего кристалл. Оптические хабы передают данные при помощи модуляции лазерного луча источника и направления его в сеть. Свет быстро распространяется по каналу и становится доступным для приема остальным хабам. Таким образом, любое сообщение в сети может быть эффективно передано всем ее участникам. Фильтрация на приемном хабе позволяет ограничить количество получателей сообщения.
АТАС допускает новую парадигму программирования многоядерных систем, с большим количеством разделяемых данных и простым механизмом распределения инструкций в рамках SIMD-модели. Механизм широковещания позволяет осуществлять массированное согласование кэшей многих ядер практически без ограничений.
При использовании новых оптических технологий АТАС процессор имеет потенциальную возможность уменьшить трудность программирования, повысить энергоэффективность, увеличить пропускную способность как внешних, так и внутренних шин данных и соответственно предусматривает масштабирование мощности (рис. 7.2).
Последние годы отмечены высокими успехами микро- и нанооптических технологий, которые позволяют переносить наработки по коммуникациям на длинные расстояния на масштабы локального компьютера, даже в пределах микросборок и интегральных схем.
Исследования показали, что оптические устройства могут быть построены при помощи стандартного КМОП-процесса, оптические линии будут способны заменить длинные связи на кристалле и глобальные шины. ATAC-архитектура возможна именно благодаря последним успехам в интеграции электронных и оптических схем. Архитектура разработана с учетом реального состояния дел в области и пониманием ограничений как оптической, так и классической полупроводниковых технологий.
Рис. 7.2. Сравнение энергоэффективности передачи оптического и электрического сигналов
Ключевые элементы технологии атас
Ключевыми элементами технологии, присутствующими на АТАС- кристалле, являются: так называемый "оптический источник питания" — источник света, волноводы для передачи света, модуляторы для помещения световых сигналов в волноводы, детекторы для приема сигналов. В АТАС источником света (оптическим питанием) служат внешние лазеры. Световой поток направляется в накристальные световоды. Энергопотребление внешнего лазера — примерно 1,5 Вт с выходом примерно 0,2 Вт в виде оптического излучения, попадающего в световод. Для использования схемы разделения частот предполагается наличие нескольких источников лазерного излучения. Световоды представляют собой встроенные каналы, по которым распространяется свет. Они направляют и распределяют при помощи комбинирования материала с большим коэффициентом преломления в центре и с меньшим по краям канала. Световоды могут быть изготовлены как из кремния, так и из полимера. С учетом того, что кремниевые световоды могут быть размещены на кристалле более компактно и что модуляторы для кремниевого световода намного более компактные, чем для полимерного, в АТАС предполагается создание кремниевых световодов. Тем более что кремниевые световоды могут быть изготовлены в стандартном КМОП-процессе.
Требуются световоды с потерями менее, чем 0,3 дБ/см и емкостью по мощности не менее 10мВт. И то и другое требование в кремнии достижимо. Для обмена информацией используются следующие компоненты: источник света, модулятор, оптический фильтр, электронный драйвер модулятора. Оптический фильтр представляет собой кольцевой резонатор, настроенный на определенную длину волны, — определяется размерами резонатора (также им определяется расстояние между длинами волн для схемы WDM). Дальнейшая настройка может быть осуществлена путем изменения температуры резонатора или его заряда. Модулятор представляет собой оптическое устройство, которое формирует цифровой сигнал, изменяя коэффициент поглощения. Модуляторы применяются для преобразования электрического сигнала в оптический — своего рода оптический коммутатор, помещающий оптический сигнал в световод.
Рис. 7.3. Структура кольцевого оптического резонатора
Модуляторы, требуемые для архитектуры АТАС, должны иметь параметры, которые ориентировочно будут достигнуты в 2012 году: потери на включение — 1 дБ, площадь — менее 50 кв. мкм, скорость модуляции — 20 Гб/с, энергия, необходимая на переключение, — менее 25 фДж и общее потребление — порядка 25 мкВт/ГГц. На приемной стороне для приема сигнала используется дополнительный компонент — оптический фильтр для приема сигнала и преобразования его в электрический вид.
Оптический фильтр (кольцевой резонатор) используется для извлечения света нужной длины волны из световода и транспортировки его к фотодетектору. Так же как и модулятор, оптический фильтр должен быть настроен на конкретную длину волны. Фотодетектор в данном случае должен быть сверхчувствительным приемником. Для архитектуры АТАС требуются следующие параметры: для 11-нм технологичного процесса — чувствительность более 1 А/Вт, ширина полосы пропускания более 3 дБ на частотах более 20 ГГц, занимаемая площадь — менее 20 кв. мкм, паразитная емкость менее 1 фФ. При данной технологии выход детектора нуждается в усилении. Как правило, начиная с технологии 22 нм, меньшая емкость входа транзистора позволяет фотодетектору управлять цифровыми схемами. На рисунке вышеперечисленные компоненты изображены вместе. Для одного ядра показана передающая часть, для другого — принимающая.
Рис. 7.4. Схема оптической передачи между двумя ядрами
Для всех ядер, входящих в архитектуру, узлы приема-передачи оптических данных одинаковые. Сигналы модулятора используются для посылки 0 или 1 в сеть. Драйвер модулятора состоит из нескольких инверторов, которые управляют емкостной нагрузкой модулятора. Модулятор помещает свет на волне предварительно настроенной длины в световод, кодируя тем самым 0 или 1. Оптически кодированные данные распространяются по световоду на скорости, равной примерно одной трети скорости света, и принимаются фильтром, настроенным на ту же длину волны. Кванты света улавливаются приемником и передаются приемному регистру на приемной стороне (рис. 7.4).
