Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций по теории вероятности.doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
4.53 Mб
Скачать

Выборочные среднее и дисперсия

Пусть для изучения генеральной совокупности относительно количественного признака X извлечена выборка объема n.

Выборочным средним называют среднее арифметическое значение признака выборочной совокупности. Если все значения признака выборки объема n различны, то .

Если значения признака имеют частоты соответственно, причем , то .

Выборочное среднее, найденное по данным одной выборки, равно определенному числу. При извлечении других выборок того же объема выборочное среднее будет меняться от выборки к выборке. То есть выборочное среднее можно рассматривать как случайную величину и говорить о его распределениях (теоретическом и эмпирическом) и о числовых характеристиках этого распределения (например, о математическом ожидании и дисперсии).

Для охарактеризования рассеяния наблюдаемых значений количественного признака выборки вокруг среднего значения вводится выборочная дисперсия. Выборочной дисперсией называют среднее арифметическое квадратов отклонения наблюдаемых значений признака от их среднего значения . Если все значения признака выборки объема n различны, то .

Если значения признака имеют частоты соответственно, причем , то .

Аналогично выборочным среднему и дисперсии определяются генеральные среднее и дисперсия, характеризующие генеральную совокупность в целом. Для расчета этих характеристик достаточно в вышеприведенных соотношениях заменить объем выборки n на объем генеральной совокупности N.

Фундаментальное значение для практики имеет нахождение среднего и дисперсии признака генеральной совокупности по соответствующим известным выборочным параметрам. Можно показать, что выборочное среднее является несмещенной состоятельной оценкой генерального среднего. В то же время, несмещенной состоятельной оценкой генеральной дисперсии оказывается не выборочная дисперсия , а так называемая “исправленнаявыборочная дисперсия, равная .

Таким образом, в качестве оценок генерального среднего и дисперсии в математической статистике принимают выборочнее среднее и исправленную выборочную дисперсию.

Надежность и доверительный интервал.

До сих пор мы рассматривали точечные оценки, т.е. такие оценки, которые определяются одним числом. При выборке малого объема точечная оценка может значительно отличаться от оцениваемого параметра, что приводит к грубым ошибкам. В связи с этим при небольшом объеме выборки пользуются интервальными оценками.

Интервальной называют оценку, определяющуюся двумя числами – концами интервала. Пусть найденная по данным выборки статистическая характеристика служит оценкой неизвестного параметра . Очевидно, тем точнее определяет параметр , чем меньше абсолютная величина разности . Другими словами, если и , то чем меньше d, тем точнее оценка. Таким образом, положительное число d характеризует точность оценки.

Статистические методы не позволяют утверждать, что оценка удовлетворяет неравенству ; можно говорить лишь о вероятности, с которой это неравенство осуществляется.

Надежностью (доверительной вероятностью) оценки по называют вероятность g, с которой осуществляется неравенство . Обычно надежность оценки задается заранее, причем в качестве g берут число, близкое к единице – как правило 0,95; 0,99 или 0,999.

Пусть вероятность того, что равна g: .

Заменим неравенство равносильным ему двойным неравенством

.

Это соотношение следует понимать так: вероятность того, что интервал заключает в себе (покрывает) неизвестный параметр Q, равна .

Таким образом, доверительным называют интервал , который покрывает неизвестный параметр с заданной надежностью .

Величину 1 - g = a называют уровнем значимости или вероятностью ошибки.

Для построения интервальной оценки параметра необходимо знать закон его распределения как случайной величины

Лекция 14. Доверительные интервалы для математического ожидания и дисперсии