
- •Пространство элементарных событий.
- •Совместные и несовместные события.
- •Операции над событиями (сумма, разность, произведение).
- •Свойства операций над событиями.
- •Алгебра и сигма-алгебра событий.
- •Классическое определение вероятности события. Случаи равновероятных исходов.
- •Статистическое определение вероятности события. Случаи неравновероятных исходов.
- •Геометрические вероятности.
- •Аксиоматическое построение теории вероятностей.
- •Полная группа событий.
- •Условная вероятность.
- •Формула умножения вероятностей.
- •Формула сложения вероятностей.
- •Независимость событий.
- •Основные понятия комбинаторики.
- •Правила суммы и произведения.
- •Случай непостоянной вероятности появления события в опытах
- •Предельные теоремы для схемы Бернулли.
- •Теорема Пуассона.
- •Понятие потока событий.
- •Локальная теорема Муавра –Лапласа.
- •Интегральная (глобальная) теорема Муавра – Лапласа.
- •Закон распределения дискретной случайной величины.
- •Свойства функции распределения
- •Свойства математического ожидания:
- •Дисперсия случайной величины и ее свойства.
- •Среднее квадратическое отклонение.
- •Распределение Пуассона.
- •Геометрическое распределение
- •Гипергеометрическое распределение (урновая схема)
- •Равномерное распределение.
- •Показательное распределение.
- •Свойства функции Гаусса.
- •Вероятность попадания нормальной случайной величины в заданный интервал.
- •Функция Лапласа и ее свойства.
- •Отклонение нормальной случайной величины от ее математического ожидания. Правило «трех сигм».
- •Закон распределения вероятностей двумерной случайной величины
- •Свойства совместной функции распределения двух случайных величин
- •Плотность совместного распределения вероятностей непрерывной двумерной случайной величины
- •Свойства двумерной плотности вероятности
- •Независимые случайные величины
- •Для независимых случайных величин справедливы соотношения
- •Корреляционный момент
- •Коэффициент корреляции Коэффициентом корреляции случайных величин X и y называют отношение корреляционного момента к произведению средних квадратических отклонений этих величин:
- •Свойства коэффициента корреляции
- •Способы отбора На практике применяются различные способы отбора, которые можно подразделить на два вида:
- •Выборочные среднее и дисперсия
- •Доверительный интервал для математического ожидания нормального распределения при известной дисперсии.
- •Доверительный интервал для математического ожидания нормального распределения при известной дисперсии.
- •Статистический критерий
- •A. Понятие о корреляционном анализе
- •Линейная регрессия
- •Множественная линейная регрессия
- •Нелинейная регрессия
- •Логарифмическая модель.
- •Обратная модель.
- •Степенная модель.
- •Показательная модель.
- •Однородные цепи Маркова
- •Понятие о системах массового обслуживания
Выборочные среднее и дисперсия
Пусть для изучения генеральной совокупности относительно количественного признака X извлечена выборка объема n.
Выборочным
средним
называют среднее арифметическое значение
признака выборочной совокупности. Если
все значения
признака
выборки объема n различны,
то
.
Если
значения признака
имеют
частоты
соответственно, причем
,
то
.
Выборочное среднее, найденное по данным одной выборки, равно определенному числу. При извлечении других выборок того же объема выборочное среднее будет меняться от выборки к выборке. То есть выборочное среднее можно рассматривать как случайную величину и говорить о его распределениях (теоретическом и эмпирическом) и о числовых характеристиках этого распределения (например, о математическом ожидании и дисперсии).
Для
охарактеризования рассеяния наблюдаемых
значений количественного признака
выборки вокруг среднего значения
вводится выборочная дисперсия.
Выборочной дисперсией
называют среднее арифметическое
квадратов отклонения наблюдаемых
значений признака от их среднего значения
.
Если все значения
признака
выборки объема n различны,
то
.
Если
значения признака
имеют
частоты
соответственно, причем
,
то
.
Аналогично выборочным среднему и дисперсии определяются генеральные среднее и дисперсия, характеризующие генеральную совокупность в целом. Для расчета этих характеристик достаточно в вышеприведенных соотношениях заменить объем выборки n на объем генеральной совокупности N.
Фундаментальное
значение для практики имеет нахождение
среднего и дисперсии признака генеральной
совокупности по соответствующим
известным выборочным параметрам.
Можно показать, что выборочное
среднее является несмещенной
состоятельной оценкой генерального
среднего. В то же время, несмещенной
состоятельной оценкой генеральной
дисперсии оказывается не выборочная
дисперсия
,
а так называемая “исправленная”
выборочная дисперсия, равная
.
Таким образом, в качестве оценок генерального среднего и дисперсии в математической статистике принимают выборочнее среднее и исправленную выборочную дисперсию.
Надежность и доверительный интервал.
До сих пор мы рассматривали точечные оценки, т.е. такие оценки, которые определяются одним числом. При выборке малого объема точечная оценка может значительно отличаться от оцениваемого параметра, что приводит к грубым ошибкам. В связи с этим при небольшом объеме выборки пользуются интервальными оценками.
Интервальной
называют оценку, определяющуюся двумя
числами – концами интервала. Пусть
найденная по данным выборки статистическая
характеристика
служит оценкой неизвестного параметра
.
Очевидно,
тем точнее определяет параметр
,
чем меньше абсолютная величина разности
.
Другими словами, если
и
,
то чем меньше d, тем
точнее оценка. Таким образом, положительное
число d характеризует
точность оценки.
Статистические методы не позволяют утверждать, что оценка удовлетворяет неравенству ; можно говорить лишь о вероятности, с которой это неравенство осуществляется.
Надежностью (доверительной вероятностью) оценки по называют вероятность g, с которой осуществляется неравенство . Обычно надежность оценки задается заранее, причем в качестве g берут число, близкое к единице – как правило 0,95; 0,99 или 0,999.
Пусть
вероятность того, что
равна g:
.
Заменим неравенство равносильным ему двойным неравенством
.
Это
соотношение следует понимать так:
вероятность того, что интервал
заключает в себе (покрывает) неизвестный
параметр Q, равна
.
Таким образом, доверительным называют интервал , который покрывает неизвестный параметр с заданной надежностью .
Величину 1 - g = a называют уровнем значимости или вероятностью ошибки.
Для построения интервальной оценки параметра необходимо знать закон его распределения как случайной величины
Лекция 14. Доверительные интервалы для математического ожидания и дисперсии