
- •Ю.С. Щербаков
- •Ю.С. Щербаков, к.Т.Н., доцент кафедры бЖиЭ. – Физико-химические процессы в техносфере Электронное учебное пособие. – Новосибирск:
- •Содержание
- •1.Введение в физические и химические процессы, происходящие в техносфере. Основные понятия и определения
- •4.6 Тяжелые металлы…..………………………………………………………….……117
- •5 . Миграция загрязнителей атмосферы, гидросферы и литосферы. Биотический перенос загрязнителей.
- •5.2 Особенности миграции радионуклидов и прогнозирование радиоактивного загрязнения местности………….………………………………………………………137
- •Введение
- •1. Введение в физические и химические процессы в техносфере. Основные термины. Понятия и определения
- •1.1 Основные термины, понятия и определения
- •Типы классификаций реакции.
- •2. По тепловому эффекту
- •3. По присутствию других веществ
- •2. Закон Бойля-Мариотта - При постоянной температуре объем данного количества газа обратно пропорционально давлению, под которым он находится
- •3. Закон Гей-Люссака - При постоянном давлении изменение объема газа прямо пропорционально температуре
- •4.Закон объемных отношений
- •5.Закон действующих масс
- •Зависимость скорости реакции
- •Зависимость скорости реакции
- •Закон Кюри
- •Закон постоянства состава вещества
- •Закон сохранения массы вещества
- •1.2 Техносфера и ее состав
- •1.3 Учение в.И. Вернадского о биосфере
- •1.4 Ноосфера
- •1.5 Распространенность химических веществ в окружающей среде
- •1.6 Кларки химических элементов в биосфере, атмосфере, гидросфере, литосфере и космосе
- •1.7 Биофильность и технофильность химического элемента. Тупиковый характер потоков технофильных элементов в биосфере
- •1.8 Система параметров, характеризующих границу предельно допустимого уровня загрязнения окружающей среды
- •2. 2. Физика и химия атмосферы и ее загрязнителей
- •2.1 Общие сведения об атмосфере
- •2.2 Температурный режим системы “Земля-атмосфера”. Изменение температурного режима, “парниковый” эффект
- •2.3 Тепловой баланс и тепловой режим земной поверхности и атмосферы
- •Инсоляция. Отражение и поглощение света
- •2.5 Ионосфера
- •2.6 Химические превращения в атмосферном воздухе
- •2.7 Радиационный и тепловой балансы поверхности Земли
- •2.8 Источники загрязнения атмосферы
- •2.9 Аэрозольное загрязнение атмосферы
- •2.10 "Кислотные дожди"
- •2.11 Озон в атмосфере. Озоновый слой планеты
- •2.12 Химия парникового эффекта
- •Физик0-химические свойства гидросферы. Трансформация загрязнителей в ней
- •3.1 Общие сведения о гидросфере
- •Классификация питьевых минеральных вод. В зависимости от общей минерализации минеральные воды классифицируются на:
- •3.2 Химический состав природных вод
- •3.3 Характеристика химических показателей качества воды
- •3.4 Физические свойства и строение воды
- •3.5 Факты, ухудшающие состояние водных объектов
- •3.6 Загрязнение вод тяжелыми металлами
- •4. Физик0-химические процессы в литосфере. Загрязнения почв
- •4.1 Общие сведения о литосфере
- •4.2 Почва, ее состав и строение
- •4.3 Водно-физические свойства почвы
- •4.5 Механизмы катионного обмена, особенности адсорбции
- •4.6 Тяжелые металлы
- •4.8 Антропогенное воздействие на почву и литосферу
- •4.9 Источники загрязнения литосферы
- •4.10 Пестициды
- •4.11 Поведение радионуклидов в почвах
- •4.12 Загрязнение почв нефтью
- •4.13 Процессы биологического разложения твердых бытовых отходов
- •5 . Миграция загрязнителей атмосферы, гидросферы и литосферы. Биотический перенос загрязнителей.
- •5.1 Миграция загрязнителей атмосферы, гидросферы и литосферы
- •5.2 Особенности миграции радионуклидов и прогнозирование радиоактивного загрязнения местности
- •5.3 Перенос и трансформация загрязнителей в биосфере
- •5.4 Аккумуляция и рассеяние веществ в ландшафте
- •6. Ионизирующее излучение и окружающая среда
- •Общие понятия о ионизирующем излучении
- •6.2 Электромагнитное излучение
- •6.3 Геомагнитное и электрическое поле Земли
- •6.4 Искусственные радионуклиды в морских экосистемах
2.12 Химия парникового эффекта
Что касается механизма действия парниковых газов, то можно сказать, что парниковые эффекты всех стабильных парниковых компонент обусловлены их тропосферным содержанием, поскольку в тропосфере находится более 75 % их общего количества. Т.е., практически весь поток ИК-излучения, который стабильные парниковые газы могут вернуть назад, они возвращают из тропосферы. Начиная с уровня тропопаузы, излучение безвозвратно уходит в космос. Исключение из этого правила касается только озона. Озон распределен по высоте существенно иначе, чем другие парниковые газы. В отличие от них, его относительное содержание непрерывно растет с высотой и достигает максимума на высотах 20-25 км. В результате земное ИК-излучение, поглощаемое озоном, будет возвращаться на землю вплоть до высоты 30 км и убыль или рост стратосферного озона до высоты 30 км будет давать такой же эффект, как убыль или рост концентрации обычных парниковых газов в тропосфере.
Тропосферный озон составляет всего 10 % от общего содержания озона в атмосфере. При истощении стратосферного озона на 6,8 % (типичное для среднеширотной атмосферы среднеглобальное значение для конца прошлого века) содержание тропосферного озона уменьшается на 2,6 %, метана – на 5,5 %. Одновременно концентрация свободных радикалов ОН’ в тропосфере увеличивается на 5 %, а концентрация атомарного кислорода – на 12 %.
Доля отраженного излучения (0,31) и составляет величину альбедо системы Земля- атмосфера в целом. Если бы больше ничего не происходило, то радиационная температура поверхности была бы 255 К, т.е. на 33 °С ниже ныне наблюдаемой среднеглобальной температуры. Как показано на рисунке 3.7 46 % солнечного излучения поглощается непосредственно земной поверхностью и идет на ее нагрев. В результате возникает направленный вверх поток инфракрасного излучения. Из 115 единиц этого излучения 106 единиц поглощается в атмосфере облаками, парами воды и другими парниковыми газами, которые излучают в космос 69 единиц и возвращают назад 100 единиц, т.е. столько, сколько приходит на верхнюю границу атмосферы от Солнца.
Таким образом, радиационный баланс в системе Земля-космос обеспечивается на 31 % коротковолновым излучением и на 69 % длинноволновым излучением. Эта ситуация характерна для сегодняшнего содержания парниковых газов в атмосфере и сегодняшней среднеглобальной облачности.
Вследствие истощения озонового слоя в тропосфере возникает повышенный поток УФ-излучения в диапазоне 290-320 нм, что приводит к повышенной скорости фотодиссоциации тропосферных веществ, поглощающих это излучение
Их фотодиссоциация приводит к образованию дополнительного количества радикалов ОН, которые являются наиболее важным тропосферным окислителем. Реакции ОН с молекулами метана, фторуглеродов (HCFC и HFC) приведут к уменьшению их концентрации в тропосфере и снижению прямого парникового эффекта этих веществ.
Дополнительное снижение парникового эффекта произойдет также из-за разрушения некоторого количества тропосферного озона в цепных реакциях водородного цикла (с участием радикалов ОН). Таким образом, косвенное влияние истощения стратосферного озона на парниковый эффект должно было способствовать его дополнительному уменьшению.
Тропосферные химические процессы в еще большей степени могут повлиять на парниковый эффект. Это влияние обусловлено следующими причинами:
- ростом тропосферного озона из-за роста эмиссии и концентрации метана, оксида углерода и оксидов азота
- уменьшением концентрации ОН радикалов из-за расходования их в реакциях с возросшим количеством оксида углерода и метана
- дополнительным увеличением концентрации ОН радикалов.
Образование озона при окислении метана и оксида углерода происходит по следующим механизмам:
- окисление метана;
- окисление оксида углерода и оксида азота.
Из приведенных схем и сопоставления концентраций и констант скорости соответствующих реакций можно заключить, что повышение концентрации, главным образом, оксида углерода и, частично, метана будет приводить к уменьшению концентрации радикалов ОН, что в свою очередь приведет к дополнительному увеличению концентрации самого метана, а также молекул HCFH и HFC, с которыми реагируют радикалы ОН. В результате прямой вклад метана, HCFH и HFC в парниковый эффект дополнительно возрастет.
К парниковым газам относятся следующие вещества:
- диоксид карбона (углекислый газ) – важнейший источник климатических изменений, на долю которого приходится, по оценкам, около 64 % глобального потепления. Основными источниками выброса углекислого газа в атмосферу являются производство, транспортировка, переработка и потребление ископаемого топлива (86 %), сведение тропических лесов и другое сжигание биомассы (12 %), и остальные источники (2 %), например, производство цемента и окисление моноксида углерода. После выделения молекула двуокиси углерода совершает цикл через атмосферу и биоту и окончательно поглощается океаническими процессами или путем длительного накопления в наземных биологических хранилищах (т.е. поглощается растениями). Количество времени, при котором примерно 63% газа выводится из атмосферы, называется эффективным периодом пребывания. Оцениваемый эффективный период пребывания для углекислого газа колеблется в пределах от 50 до 200 лет
- метан (СН4) имеет как природное, так и антропогенное происхождение. В последнем случае он образуется в результате производства топлива, пищеварительной ферментации (например, у скота), рисоводства, сведения лесов (главным образом, вследствие горения биомассы и распада избыточной органической субстанции). На долю метана приходится, по оценкам, примерно 20 % глобального потепления. Выбросы метана представляют собой значительной источник парниковых газов
- закись азота (N2O) – третий по значимости парниковый газ Киотского протокола. Выделяется при производстве и применении минеральных удобрений, в химической промышленности, в сельском хозяйстве и т.п. На него приходится около 6 % глобального потепления
- перфторуглероды – ПФУ (Perfluorocarbons – PFCs).Углеводородные соединения, в которых фтор частично замещает углерод. Основными источниками эмиссии этих газов являются производство алюминия, электроники и растворителей. При алюминиевой плавке выбросы ПФУ возникают в электрической дуге или при так называемых «анодных эффектах»
- гидрофторуглероды (ГФУ) – углеводородные соединения, в которых галогены частично замещают водород. Газы, созданные для замены озоноразрушающих веществ
- гексафторид серы (SF6) – парниковый газ, использующийся в качестве электроизоляционного материала в электроэнергетике. Выбросы происходят при его производстве и использовании. Чрезвычайно долго сохраняется в атмосфере и является активным поглотителем инфракрасного излучения. Поэтому это соединение, даже при относительно небольших выбросах, обладает потенциальной возможностью влиять на климат в течение продолжительного времени в будущем.
КОНТРОЛЬНЫЕ ВОПРОСЫ К МОДУЛЮ 2
Температурный режим системы “Земля-атмосфера”?
Химический состав атмосферы?
Физические процессы, происходящие в атмосфере?
Подразделение атмосферы Земли в зависимости от распределения температуры.
Особенности физико-химических процессов в ионосфере?
Химия парникового эффекта?
Факторы, влияющие на атмосферные процессы?
Образование атмосферной аэрозоли?
Парниковый эффект.
От чего зависит инсоляция поверхностей?
Методы расчета инсоляции?
Законы отражения света?
Тепловой баланс и тепловой режим земной поверхности и атмосферы?
Конвекция в атмосфере?
Радиационный баланс атмосферы и подстилающей поверхности?
Конденсация водяного пара в атмосфере?
Влажность воздуха?
Оптические явления в атмосфере
Воздействие ракетной техники на ионосферу
Состав сухого воздуха атмосферы?
Источники загрязнения атмосферного воздуха?
Окислительные компоненты атмосферы
Озоновый слой в атмосфере?
Взаимодействие аэрозолей с объектами техносферы?