
- •2. Естпп. Объекты произ-ва
- •Вопрос 3. Система допусков и посадок. Квалитеты точности размеров. Виды посадок, их назначение и условные обозначения на чертежах.
- •4. Нормирование точности допусков зубчатых и червячных передач. Система для цилиндрических передач.
- •5. Допуски и посадки подшипников качения
- •7. Классиф-я отклонений геометрич. Параметров деталей. Волнистость. Шероховатость
- •8. Суммарная погрешность механической обработки и методы её расчёта
- •9. Поверхности заготовок. Понятие о базах и базировании. Выбор технологических баз. Погрешности базирования, закрепления и установки.
- •10 Влияние на точность обработки заготовок точности станка и износа режущего инструмента.
- •12. Точность мех. Обработки. Методы ее достижения. Экономическая и достижимая точность.
- •14. Влияние качества поверхностей и точности деталей на эксплуатационные свойства машин.
- •15 Определение погрешности механической обработки методами математической статистики.
- •17. Технологические требования к конструкции деталей и заготовок.
- •18. Способы получения заготовок методом литья.
- •19. Нормирование припусков и допусков заготовок при литье.
- •20 Сущность обработки металлов давлением
- •22. Электродуговая сварка
- •22.Электродуговая сварка.
- •23. Сварочное производство. Контактная сварка, её виды и сущность процесса.
- •24. Последовательность проектирования тп механической обработки заготовок. Установление маршрута обработки отдельных поверхностей, составление маршрута обработки заготовок.
- •27. Размерный анализ тп мех. Обр-ки заготовок
- •28. Типовой технологический процесс изготовления базовых деталей (рам, станин)
- •Техпроцесс
- •29. Типовой технологический процесс изготовления корпусных деталей.
- •30 Типовой технологический процесс изготовления валов и фланцев.
- •32. Типовой тп изготовления деталей типа рычагов
- •33. Оптимальный технологический процесс. Задачи параметрической оптимизации. Математическая модель процесса, критерии оптимальности, система ограничений, алгоритм расчёта (на примере)
- •34. Особенности разработки технологических операций для станков с программным управлением.
- •37. Формы организации сборочных работ. Технологические схемы сборки
- •38. Способы обеспечения точности при сборке изделий
- •39. Выбор материалов деталей машин и их термической или химико-термической обработки.
- •№42. Терм. Обработка: перечислить виды. Практика закалки. Отпуск.
- •43. Химико-термическая обработка: цементация и азотирование. Сущность процессов. Режимы и применение обработки.
- •45 Инструментальные материалы и их основные свойства. Области применения.
- •52. Сверлильные и расточные станки.
- •53. Зубообрабатывающие и резьбообрабатывающие станки, их назначение и технологические возможности. Схемы обработки.
- •55. Обработка заготовок на строгальных и долбежных станках
- •57. Цикловое пу
- •58. Числовое программное управление.
- •Оси координат на станках с чпу
- •59. Автоматизация сборочных процессов. Оборудование для автоматической сборки.
- •63. Экономическая стойкость резания. Скоростное резание металлов. Резание с большими подачами.
- •64. Методы расчетов оптимальных режимов резания.
- •67. Резьбонарезной иснрумент. Его основные харак-ки и применение
- •68. Протягивание. Схемы резания при протягивании. Основные типы протяжек. Конструктивные элементы протяжек.
- •69. Зубонарезание и шевингование. Способы и методы зубонарезания. Основные типы инструментов и их конструкция.
- •По степени унификации и стандартизации систем приспособлений
- •72. Зажимные устройства. Типовые схемы и методика расчета сил закрепления
- •74. Планы скоростей.
- •77. Выбор и расчет опор качения
- •Выбор подшипников качения
- •79. Муфты, их классификация. Выбор стандартных муфт.
- •Управляемые муфты
- •Самоуправляемые муфты
- •80.Классификация сапр. Составные функциональные части сапр. Виды обеспечения сапр.
- •82. Лингвистическое обеспечение сапр. Составные функциональные части. Виды обеспечения.
- •84. Сапр механической обработки на станках с чпу.
№42. Терм. Обработка: перечислить виды. Практика закалки. Отпуск.
Термическая обработка – это тепловое воздействие на металлы и сплавы с целью придания им желаемой структуры, а следовательно, и свойств. Основными видами термической обработки, различно изменяющими структуру и свойства стали и назначаемыми в зависимости от требований, предъявляемых к полуфабрикатам (отливки, поковки, прокат и т. д.) и готовым изделиям, являются отжиг, улучшение, нормализация, закалка и отпуск.
В черной металлургии преобладающими процессами термической обработки металлопродукции являются отжиг, нормализация и высокий отпуск, снижающие твердость, что облегчает металлургический передел (например, калиброванной стали) и деформационную и механическую обработку резанием на машиностроительных заводах.
Отжиг – это термическая обработка, заключающаяся в нагреве стали до определённой температуры, временной выдержке при этой температуре и последующим охлаждении вместе с печью.
Нормализация заключается в нагреве доэвтектоидной стали до температуры, превышающей точку Ас3(9110С) на 40-50 °C, заэвтектоидной выше Ас1 (7270С) также на 40-50 °C, непродолжительной выдержке для прогрева садки и завершения фазовых превращений и охлаждении на воздухе. Нормализация вызывает полную фазовую перекристаллизацию стали и устраняет крупно-зернистую структуру, полученную при литье или прокатке, штамповке или ковке.
Закалка заключается в нагреве стали на 30-50 °C выше Ас3 для доэвтектоидных сталей или Ас1 для заэвтектоидных сталей, выдержке для завершения фазовых превращений и последующем охлаждении со скоростью выше критической. Для углеродистых сталей это охлаждение чаще проводят в воде, а для легированных – в масле или в других средах. Основными параметрами закалки являются температура нагрева, время выдержки и скорость охлаждения. Температура нагрева и время выдержки должны быть такими, чтобы в сплаве успели произойти полиморфные превращения и раствориться избыточные фазы, как при отжиге второго рода, а скорость охлаждения должна быть высокой, чтобы не успели пройти обратные процессы фазовых превращений (эвтектоидный распад, выделение избыточной фазы), связанные с процессами диффузии. Существует два вида закалки: без полиморфного превращения и с полиморфным превращением.
Закалка без полиморфного превращения характеризуется тем, что в результате быстрого охлаждения фиксируется состояние сплава при низкой температуре, свойственное ему при более высокой температуре. При этом образуются пересыщенные твердые растворы. Температуру выбирают такой, чтобы возможно более полно растворились избыточные фазы в матричной фазе (карбиды в аустените). Время выбирают таким, чтобы полностью завершились процессы растворения избыточных фаз. Скорость охлаждения должна быть такова, чтобы не успел произойти распад матричного раствора. Закалка с полиморфным превращением обеспечивает в результате охлаждения перестройку кристаллической решетки сплава. Главным результатом такой закалки является мартенситное превращение высокотемпературной фазы. Мартенситное превращение для углеродистых сталей и чугунов возможно только из аустенитного состояния при быстром охлаждении с температур выше линии GSK, когда становится невозможным диффузионный распад аустенита на феррит и карбиды, а образуется сразу бездиффузионным путем мартенсит. Закалка не является окончательной операцией термической обработки. Чтобы уменьшить хрупкость и напряжения, вызванные закалкой, и получить требуемые механические свойства, сталь после закалки обязательно подвергают отпуску.
Отпуск заключается в нагреве закаленной стали до температуры ниже Ас1,выдержке при заданной температуре и последующем охлаждении с определенной скоростью. Отпуск является окончательной операцией термической обработки, в результате которой сталь получает требуемые механические свойства. Кроме того, отпуск полностью или частично устраняет внутренние напряжения, возникающие при закалке. Эти напряжения снимаются тем полнее, чем выше температура отпуска.
Скорость охлаждения после отпуска также оказывает большое влияние на величину остаточных напряжений. Чем медленнее охлаждение, тем меньше остаточные напряжения. По этой причине изделия сложной формы во избежание их коробления после отпуска при высоких температурах следует охлаждать медленно, а изделия из легированных сталей, склонных к обратимой отпускной хрупкости, после отпуска при 500— 650°С во всех случаях следует охлаждать быстро.
Основное влияние на свойства стали оказывает температура отпуска. Различают три вида отпуска.
Низкотемпературный (низкий) отпуск проводят с нагревом до 250°С. При этом снижаются внутренние напряжения, мартенсит закалки переходит в отпущенный мартенсит, повышается прочность и немного улучшается вязкость, без заметного снижения твердости. Закаленная сталь (0,5—1,3 % С) после низкого отпуска сохраняет твердость в пределах НRС 58—63, а следовательно, высокую износостойкость. Однако такое изделие (если оно не имеет вязкой сердцевины) не выдерживает значительных динамических нагрузок.
Низкотемпературному отпуску подвергают режущий и измерительный инструмент из углеродистых и низколегированных сталей, а также детали, претерпевшие поверхностную закалку, цементацию, цианирование или нитроцементацию. Продолжительность отпуска обычно 1—2,5 ч, а для изделий больших сечений и измерительных инструментов назначают более длительный отпуск.
Среднетемпературный (средний) отпуск выполняют при 350—500°С и применяют главным образом для пружин и рессор, а также для штампов. Такой отпуск обеспечивает высокий предел упругости, предел выносливости и релаксационную стойкость. Структура стали после среднего отпуска — троостит отпуска или троосто-мартенсит; твердость стали HRС 40—50. Температуру отпуска надо выбирать таким образом, чтобы не вызвать необратимой отпускной хрупкости.
Высокотемпературный (высокий) отпуск проводят при 500—680°С. Структура стали после высокого отпуска — сорбит отпуска. Высокий отпуск создает наилучшее соотношение прочности и вязкости стали.
Закалка с высоким отпуском по сравнению с нормализованным или отожженным состоянием одновременно повышает σв и σ0,2, δ и ψ, а также KCU. Термическую обработку, состоящую из закалки и высокого отпуска, называют улучшением.
Улучшению подвергают среднеуглеродистые (0,3—0,5% С) конструкционные стали, к которым предъявляются высокие требования к пределу текучести, пределу выносливости и ударной вязкости. Улучшение значительно повышает конструктивную прочность стали, уменьшая чувствительность к концентраторам напряжений, работу развития трещины, снижает температуру верхнего и нижнего порога хладноломкости.
Отпуск при 550—600°С в течение 1—2 ч почти полностью снимает остаточные напряжения, возникшие при закалке. В зависимости от габаритных размеров изделия длительность высокого отпуска составляет 1,0—6 ч.
Закалке с высоким отпуском (600—700 °С) на металлургических заводах подвергают низкоуглеродистую и низколегированную толстолистовую сталь, что повышает ее сопротивление хрупкому разрушению и уменьшает склонность к старению.