
- •Кариотип и его особенности у крс, овец, коз.
- •Генетический груз популяций и методы его оценки.
- •3. Строение и синтез нуклеиновых кислот. Генетический контроль биосинтеза белка в клетках. Генетический код и его характеристика.
- •4. Ветеринарная генетика, предмет и методы исследований. Значение на современном этапе развития селекции и ветеринарии.
- •5. Влияние инбридинга на выщепление рецессивных летальных генов
- •6. Мозаицизм и химеризм в кариотипе животных. Связь химеризма хх/ху с фримартинизмом и другими нарушениями развития.
- •7. Сущность явлений наследственности и изменчивости. Типы изменчивости.
- •8. Современные представления о структуре гена и функции. Мобильные, прыгающие гены.
- •9. Группы крови с/х животных. Характер их наследования. Использование групп крови в ветеринарной практике.
- •10. Генетическая обусловленность респираторных заболеваний и болезней жкт.
- •19. Сущность законов г. Менделя.
- •21. Методы генетического анализа в изучении этиологии врожденных аномалий.
- •22. Митоз, мейоз и их биологическое значение.
- •23. Понятие о мутациях и мутагенезе. Классификация мутагенов.
- •24. Аномалии птиц. Наследственная обусловленность и их влияние на продуктивность.
- •26. Генетические болезни крс
- •60) Схемы сцепленного с полом наследования. Примеры сцепленных с полом аномалий у животных.
- •61) Основные положения хромосомной теории наследственности
- •62) Вирусы и бактерии как факторы мутагенеза
- •63) Генетический анализ при мультифакторных болезнях
- •64) Сущность комплементарного и эпистатического взаимодействия генов. Примеры на животных.
- •65) Мейоз и гаметогенез
- •66) Биотехнологии в практике животноводства и ветеринарии
- •67) Типы доминирования на примерах наследования признаков у с/х животных
- •81, 87. Антимутагены и их характеристика.
- •56, 77. Классификация мутагенов среды. Лекарственные препараты и мутагенез.
- •76. Хромосомные болезни у животных, вызванные не расхождением половых хромосом.
- •78. Генетика микроорганизмов, роль в современной биотехнологии.
- •79. Особенности наследования признаков, сцепленных с полом и ограниченных полом.
- •80. Понятие о популяции и чистой линии. Генофонд и методы его оценки.
- •82. Генетическая детерминация пола. Проблема раннего определения пола и изменения соотношения полов в практике животноводства.
- •83. Экспрессивность и пенентрантность как факторы, влияющие на оценку продуктивности животных.
- •84. Гены – модификаторы и трансгены и их влияние на качество продукции.
- •85. Регуляция генной активности.
- •86. Основные факторы генетической эволюции в популяциях.
- •88. Нуклеиновые кислоты днк, рнк и их роль в наследственности. Структура днк по Уотсону и Крику.
- •89. Значение миграций и дрейфа генов в распространении мутаций.
- •90. Экологическая генетика, её задачи и значение для ветеринарии. Классификация мутагенов (см. 56 вопрос).
Ветеринарная генетика.
Кариотип и его особенности у крс, овец, коз.
Кариотип – совокупность количественных и структурных особенностей диплоидного набора хромосом вида.
В соматических клетках хромосомы парные, набор хромосом диплоидный.
Пары гомологичный по величине и форме хромосом – гомологичные.
Гоносомы (половые хромосомы) – хромосомы, по-разному представленные у двух полов и противоположно участвующие в генетическом контроле половой дифференциации и половых функций.
Аутосомы – хромосомы, одинаковые у разных полов.
Особенности: КРС – 2n=60, аутосомы акроцентрики (58), половые хромосомы мета- и субметацентрики.
Оацы – 2n=54, аутосомы:46 – акроц., 6 – субмета- и метац., Х-хромосома – акроц., Y-хр. – мета, субметац.
Козы – 2n=60, аутосомы акроц. (58), Х-акроц., Y – мета-, субметац.
Генетический груз популяций и методы его оценки.
Генетический груз – совокупность вредных генных и хромосомных мутаций.
(По Уколову): Г.гр. – рецессивные мутации в гетерозиготном состоянии (фенотипически не видны), вызывают летальный/полулетальный эффект (смертность).
Вызывают: - снижение жизнеспособности (отставание в росте, низкая живая масса, частые болезни)
- проявление аномалий (мумификация – аномалия кожного покрова, его отсутствие, отсутствие перьев, деформация, закрученность; аномалии покрова желудка – язвы и т.п.; деформации строения: укорочение челюстей (прикус); полидентия, искривление/укорочение клюва
- аномалии конечностей, периферии (укорочение, удлинение, рахитозность, многопальцевость, копытность)
- аном. позвоночника (укорочение, удлинннение, искривление, деформация позвонков)
- отсутствие фрагментов мозжечка (деэнцефалия), водянка головного мозга.
[Аномалии – морфофункциональные (=морфофизиологические) отклонения, вызванные наследственным аппаратом (мутации), травмами, модой .
Они бывают морфологические, физиологические, биохимические, анатомические.]
Методы оценки: на основании фенотипического проявления мутации (уродства, врождённые аномалии нарушения обмена), анализа типа их наследования, частоты в популяции, путём сравнения частот мертворожденных в родственных и неродственныъ подборах родительских пар; учёт хромосомных мутаций ведётся прямым цитологическим методом (основная компонента груза у КРС – робертсоновские транслокации и транслокация 1/29 хромосомы, а у свиней – реципроктные).
3. Строение и синтез нуклеиновых кислот. Генетический контроль биосинтеза белка в клетках. Генетический код и его характеристика.
Нуклеиновые кислоты содержатся в клетках в двух видах – в виде РНК (находится как цитоплазме так и в ядре) и ДНК (материальная основа наследственности). Нуклеиновые кислоты – макромалекулярные вещества.
Молекула РНК представляет собой длинную цепь, состоящую из последовательно расположенных звеньев – нуклеотидов. Нуклеотид состоит из 3 компонентов – остаток фосфорной кислоты, рибоза и азотистое основание: аденин, гуанин, цитозин, урацил. Существует три вида РНК: информационная (и-РНК), транспортная (т-РНК) и рибосомная (р-РНК).
Молекула ДНК схожа с РНК, но вместо рибозы – дезоксирибоза, а вместо урацила – тимин.
В 1953 году Дж.Уотсон и Ф.Крик установили структуру ДНК. Она имеет двойную спираль, состоящую из двух полинуклеотидных цепей с общей осью. На каждый виток спирали приходится 10 пар нуклеотидов. Связь между цепочками осуществляется за счет водородных связей между азотистыми основаниями: А – Т – две, Г – Ц – три.
Синтез ДНК – репликация ДНК – процесс самоудвоения ДНК. Происходит в S – период интерфазы, перед каждым удвоением хромосом и делением клетки. По схеме Уотсона и крика молекула сначала раскручивается (расплетается вдоль оси), при этом водородные связи между азотистыми основаниями рвутся и цепи расходятся. Одновременно к нуклеотидам каждой цепи пристраиваются комплиментарные азотистые основания нуклеотидов второй цепи, которые с помощью ферментов ДНК-полимераз связываются в новые полинуклеотидные цепи. В результате образуются две дочерние цепочки. При этом каждая из них, наследуя структуру одной цепи материнской молекулы, строго сохраняет специфичность заключенной в ней информации. Репликация начинается в определенной точке под влиянием белка геликазы. А расхождение цепей за счет фермента топоизомеразы. На материнской цепи репликация одет от точки старта в направлении 5`-3` сплошной линией - лидирующая цепь, На второй цепи синтез происходит в направлении 3`-5`, но не сплошняком а отдельными фрагментами – запаздывающая цепь. В конечном итоге эти фрагменты соединяются при помощи фермента лигазы общую цепочку.
Синтез РНК: все гены РНК делят на 3 группы – кодирует и-РНК , кодирует р-РНК, кодирует т-РНК. У прокариот известно 7 генов, кодирующих р-РНК. Длина каждого такого гена около 5 тыс. нуклеотид. Синтез РНК в живой клетке проводится ферментом — РНК-полимеразой. У эукариот разные типы РНК синтезируются разными, специализированными РНК-полимеразами. В целом матрицей синтеза РНК может выступать как ДНК, так и другая молекула РНК. Например, полиовирусы используют РНК-зависимую РНК-полимеразу для репликации своего генетического материала, состоящего из РНК. Но РНК-зависимый синтез РНК, который раньше считался характерным только для вирусов, происходит и в клеточных организмах, в процессе так называемой РНК-интерференции.
Вторичная структура молекулы матрицы расплетается с помощью хеликазной активности полимеразы, которая при движении субстрата в направлении от 3' к 5' концу молекулы синтезирует РНК в направлении 5' → 3'. Терминатор транскрипции в исходной молекуле определяет окончание синтеза. Многие молекулы РНК синтезируются в качестве молекул-предшественников, которые подвергаются «редактированию» — удалению ненужных частей с помощью РНК-белковых комплексов
На таком гене сначала образуется незрелая р-РНК. В ней содержится: несущие информацию ставки, информация о 3 видах р-РНК и о нескольких видах т-РНК. Созревание состоит в том, что вырезаются все ставки и цепи р- и т-РНК. Основная часть генов т-РНК одиночная. Часть т-РНК генов объединяются в группы с генами р-РНК.
Синтез белка в клетке
Синтез белка в клетке происходит в интерфазе в период G1 в 2 этапа: транскрипция, трансляция. Транскрипция – переписывается информация с ДНК на и-РНК. Переписана может быть любая цепь материнской ДНК, но обычно переписывается матричная. и-РНК строится из свободных рибонуклеатидов ядра по принципу комплиментарности матрицы. Образование эфирных связей между рибонуклеотидами способствует фермент РНК – полимераза. У прокариот известен 1 такой ф-т, а у эукариотов – 3 – для и-РНК, т-РНК, р-РНК. РНК полимераза связывается промоутером – специфическая последовательность нуклеотидов длиной 6 – 30 оснований, который стоит перед каждым геном. Начиная с промоутера, РНК полимераза расплетает ген на 2 цепи и на матричной строится РНК. Когда считывание информации на ДНК дойдёт до обратных повторов нуклеотидов, на цепи РНК образуется петля или шпилька. Она мешает продвижению РНК полимераза, поэтому синтез РНК останавливается. У прокариот и-РНК не требует созревания, т.к. не содержит интронов; у эукариот образуется незрелый транскрипт и – РНК – включает в себя экзоны – участок, который кодирует аминокислоты; интроны – нуклеотиды, не несущие информацию. Созревание и-РНК происходит в ядре и называется процессинг, кот состоит в том, что интроны вырезаются, а оставшиеся экзоны сращиваются в цепь – силайсинг. Затем зрелая и-РНК модифицируется: 1) на 5 ́ конце и-РНК образуется кэп или колпачок – от 50 – 200 остатков метилированного гуанина. С помощью него и-РНК прикрепляется к малой субчастице рибосомы. 2) к 3 ́ концу прикрепляется до 200 адениловых остатков. Они стабилизируют цепь и-РНК. В таком виде зрелая и-РНК направляется в цитоплазму на рибосомы и прикрепляется на малую субчастицу. Трансляция – сборка белка из аминокислот: 1) инициация – начало синтеза. т-РНК-и узнаёт триплет инициатор синтеза АУГ, стоящее в начале цепи и-РНК. т-РНК-м узнает этот же триплет в любом месте цепи и-РНК. Большая субчастица рибосомы соедин-ся с малой. 2) Элонгация – удлинение белковой цепи. т-РНК-и занимает п-участок рибосомы, а вторая т-РНК, антикодон которой соответствует кадону, на и-РНК переносит свою аминокислоту в а- участок рибосомы. Между аминокислотой наход-ся п- и а- участки, образуется пептидная связь. а- участок освобождается, т.к. рибосомы передвигаются по и-РНК на один шаг. В него поступает третья аминокислота – трипептид – рибосомы продвигаются на шаг. 3) терминация – остановка синтеза. Когда считывание инф-ции на и-РНК дойдёт до одного триплета терминаторов, а участок не освобождается, т.к. нет т-РНК, кот соответствует терминатору – синтез белка прекращается. С помощью трёх белков факторов терминации цепь белка и цепь и-РНК отсоединяются от рибосомы.
Регуляция синтеза и-РНК и белка
Процесс реализации генетической информации наз экспрессия генов (работа генов). Работа генов регулируется на уровне транскрипции и-РНК с помощью белков репрессоров и активаторов. Регуляция работы генов прокариот наз индукцией, репрессии и рассматривается на примере работы лактозного оперона. У кишечной палочки за распад лактозы отвечают 3 фермента, а за синтез этих ферментов 3 структурных гена, расположены последовательно друг друга. На этих генах образуется 1 молекула из РНК. Перед структурными генами нах. общий для них оператор, а передний промотр. Оперон – сайт, в котором молекулы белка репрессора. Промотр – несколько нуклеотидов с котор связывается РНК полимераза и начинается транскрипция. На небольшом расстоянии от оперона нах. ген. – репрессор. На нём синтезируется и-РНК, белки репрессоры есть в кл всегда. Репрессия – остановка работы оперона. Индукция – включение в работу. Когда появл вещ-во индукта (лактоза), то молекула индуктора освобождает оператор от белка репрессора, то структурные гены начинают работать. – это негативная регуляция работы генов. Существует пазитивная регуляция – сигнал усиления транскрипции – комплекс АМФ-сар, когда такой комплекс связывается с промотором транскрипция усиливается в 50 раз.
Генетический код. Его особенности:
Генетический код триплетный (каждая аминокислота кодируется тремя нуклеотидами – фенилаланин – УУУ)
Неперекрывающийся (соседние триплеты не имеют общих нуклеотидов)
Вырожденный (за исключением метионина и триптофана все аминокислоты имеют более одного триплета)
Универсальный (в основном одинаков для всех живых организмов)
В кодонах для одной аминокислоты первые два нуклеотида, как правило, одинаковы, а третий варьируется
Имеет линейный порядок считывания и характеризуется колинеарностью, т.е. совпадением порядка расположения кодонов в иРНК с порядком расположения аминокислот в синтезирующейся полипептидной цепи.