
- •Предисловие
- •Раздел I. Уравнения установившихся режимов электрических систем
- •1.1 Понятие о режимах электрических систем и их математических моделях
- •1.2 Аналитическое представление информации о конфигурации электрической сети с помощью матриц инциденций и матричная запись законов Кирхгофа
- •1.2.1 Принципы нумерации элементов схемы
- •1.2.2 Первая матрица инциденций «узлы-ветви» и ее применение для записи 1-го закона Кирхгофа
- •Вопросы для самопроверки
- •1.2.3 Вторая матрица инциденций «ветви-контуры» и её применение для записи 2-го закона Кирхгофа
- •1.2.4 Получение контурной конфигурационной модели электрической сети на основе её узловой модели
- •Вопросы для самопроверки
- •1.2.5 Запись уравнений состояния сети по законам Кирхгофа
- •1.3 Узловая модель установившегося режима электрической сети
- •1.3.1 Вывод узловых уравнений
- •Здесь – транспонированная I-я матрица инциденций;
- •1.3.2 Определение и характеристика матрицы узловых проводимостей
- •Вопросы для самопроверки
- •1.4 Контурные уравнения установившихся режимов электрических систем
- •1.4.1. Вывод контурных уравнений
- •1.4.2. Определение и характеристика матрицы контурных сопротивлений
- •Вопросы для самопроверки
- •1.5 Запись уравнений состояния сети с помощью матриц обобщенных параметров
- •Вопросы для самопроверки
- •1.6 Расчёт режима электрической сети с использованием матрицы коэффициентов распределения
- •1.7 Решение уравнений состояния методом Гаусса
- •Факторы, влияющие на точность решения
- •Вопросы для самопроверки
- •Раздел II. Методы решения уравнений установившихся режимов электрических систем
- •2.1. Математическая характеристика уравнений установившегося режима
- •2.2. Характеристика методов решения систем уравнений установившегося режима
- •2.3. Итерационные методы решения систем уравнений установившегося режима
- •2.4. Критерии сходимости итерации и анализ их выполнения для узловых уравнений установившихся режимов
- •2.4.1 Доказательство теоремы сходимости итерации
- •2.4.2 Следствия из теоремы сходимости итерации
- •2.4.3 Факторы, влияющие на сходимость итерации для узловых уравнений установившихся режимов
- •2.4.4 Критерии сходимости и анализ сходимости нелинейных систем узловых уравнений установившихся режимов
- •2.5 Решение уравнений узловых напряжений итерационными методами
- •2.5.1 Решение уравнений узловых напряжений в форме баланса токов
- •2.5.2 Обращенная форма уравнений узловых напряжений и их анализ
- •2.6 Применение метода Ньютона для решения уравнений установившихся режимов
- •2.6.1 Обоснование метода Ньютона для решения нелинейного уравнения
- •2.6.2 Применение метода Ньютона для решения систем нелинейных уравнений
- •2.6.3 Решение нелинейных узловых уравнений методом Ньютона.
- •Вопросы для самопроверки
- •Раздел III. Задание и исходные данные на курсовую работу
- •3. Схемы сети
- •Перечень графического материала (в виде компьютерных рисунков на формате а4)
- •Раздел IV. Пример выполнения разделов курсовой работы
- •Составление схемы замещения электрической сети, определение ее параметров и нагрузок в узлах
- •Составление элементарных матриц параметров сети, режима сети и матриц соединений
- •Расчет матрицы узловых проводимостей и матрицы контурных сопротивлений
- •Расчет режима электрической сети по линейным узловым и контурным уравнениям при задании нагрузок в токах
- •Расчет режима электрической сети по линейным узловым уравнениям с использованием метода Гаусса
- •Расчет режима электрической сети по узловым уравнениям в форме баланса токов при их решении методом ускоренной итерации
- •Расчет режима электрической сети по обращенным узловым уравнениям
- •Расчет режима электрической сети методом Ньютона
- •Расчет утяжеленного режима с применением матриц обобщенных параметров электрической сети
- •Схемы электрической сети с результатами расчета режимов
- •Приложения Приложение 1. Матрицы и их преобразования
- •Приложение 2. Список условных обозначений
- •Литература
Расчет режима электрической сети по обращенным узловым уравнениям
Организуем итерационный процесс на базе матричного уравнения:
, (25)
где - матрица узловых проводимостей без учета балансирующего узла, - вектор-столбец падений напряжений в узлах сети, относительно балансирующего узла, - вектор-столбец задающих токов (токи содержат свой знак).
Оставим в левой части уравнения (25) лишь вектор-столбец падений напряжений.
. (26)
Распишем
как разность напряжений в узлах
и напряжения в балансирующем узле
:
. (27)
Приравняем правые части уравнений (26) и (27):
(28)
Выразим вектор-столбец напряжений в узлах:
(29)
Выразим через задающую мощность в узлах и напряжения в узлах схемы:
(30)
Подставим выражение (30) в выражение (29):
(31)
Обратную матрицу в выражении (31) обозначим через Z. Она носит название – матрица собственных и взаимных сопротивлений. Элементы матрицы узловых сопротивлений Zij представляют собой коэффициенты частичного падения напряжения, или коэффициенты влияния тока нагрузки в j-том узле на напряжение в i-том узле.
(32)
С учетом нового обозначения (32), уравнение (31) примет вид:
(33)
Итерационная
процедура определения напряжения по
обращенным уравнениям может быть
ускорена, если на k-той
итерации для расчета i-того
неизвестного принимать
из этой же k-той
итерации, а остальные неизвестные Ui+1
брать из (k-1)
итерации, то есть вести процесс по методу
ускоренной итерации. Так и поступим.
На основе уравнения (33) составим систему уравнений для итерационного процесса:
Точность итерационного процесса будет равна: ε= Ui+1-Ui ≤0.04 кВ, где i- номер итерации.
Вычислим
обратную матрицу узловых проводимостей
.
Зададимся нулевым приближением узловых напряжений и рассчитаем первую итерацию:
Первая итерация:
Сравнивая эти значения с рассчитанными напряжениями в первом приближении по методу узловых уравнений в не обращенной форме, можно сделать вывод, что данный метод дает уже в первом приближении значения узловых напряжений с очень хорошей точностью.
Вторая итерация:
Произведем построение графика сходимости итераций U=f(I), где I – номер итерации:
Рисунок 3
На основе проведенного итерационного процесса, производим расчет режима нашей сети.
Падение напряжения в узлах относительно балансирующего:
Определяем токи в ветвях схемы:
Определяем падения напряжения в ветвях схемы:
Определяем потоки мощности в ветвях схемы:
Определим потери мощности в ветвях сети:
Определяем суммарные потери мощности в ветвях:
Определим токи в узлах схемы:
Определим мощности в узлах сети:
Рассчитаем небаланс мощности. Как уже говорилось ранее, он не должен превышать 1%.
Как видно, небаланс мощности менее 1%. Это свидетельствует о том, что заданная точность итерационного процесса нас полностью удовлетворяет как по напряжению, так и по мощности.