
- •Часть I. Механизмы хранения и реализации генетической информации 17
- •Глава 1. Геном 25
- •Глава 2. Реализация генетической информации при экспрессии генов 61
- •Глава 3. Основные пути регуляции экспрессии генов 224
- •Глава 4. Воспроизведение генетической информации 390
- •Глава 5. Защита генетической информации 432
- •Глава 6. Современная концепция гена 522
- •Часть II. Искусственные генетические системы 531
- •Глава 7. Принципы генной инженерии 532
- •Глава 8. Направленный мутагенез и белковая инженерия 629
- •Глава 9. Антисмысловые рнк, рибозимы и дезоксирибозимы 679
- •Глава 10. Трансгенные животные и растения 722
- •Глава 11. Днк-диагностика и днк-типирование 755
- •Глава 12. Картирование и определение первичной структуры генома человека 797
- •Предисловие редактора
- •Предисловие автора
- •Часть I. Механизмы хранения и реализации генетической информации введение
- •Глава 1.Геном
- •1.1.Гены и хромосомы
- •1.2.Геном прокариот
- •1.2.1.Геном вирусов
- •1.2.2.Нуклеоид бактериальной клетки
- •1.2.3.Геном архебактерий
- •1.2.4.Минимальный размер генома одноклеточных организмов
- •1.3.Геном эукариот
- •1.3.1.Последовательности нуклеотидов эукариотического генома
- •1.3.2.Хроматин
- •1.3.3.Роль днк-топоизомераз в обеспечении структуры и функционирования хроматина
- •Глава 2.Реализация генетической информации при экспрессии генов
- •2.1.Транскрипция
- •Характеристики белковых компонентов холофермента
- •2.1.2.Единицы транскрипции (транскриптоны)
- •2.1.3.Этапы транскрипции
- •2.1.4.Хроматин во время транскрипции
- •2.2.Котранскрипционные и посттранскрипционные модификации рнк
- •2.2.1.Процессинг рнк у бактерий
- •2.2.2.Редактирование пре-мРнк
- •Различные способы редактирования мРнк
- •Редактирование рнк у животных и их вирусов
- •2.2.3.Другие модификации эукариотических мРнк
- •Механизм прямой и обратной реакций аутосплайсинга
- •2.3.Функциональная компартментализация ядра
- •2.3.1.Интерфазные хромосомы в ядре
- •2.3.2.Ядрышко
- •2.3.3.Пространственная организация синтеза мРнк
- •2.3.4.Ядерные тельца и домены
- •2.3.5.Компартментализованное ядро
- •2.4.Биосинтез белка рибосомами бактерий
- •2.4.1.Рибосомы
- •2.4.2.Этапы биосинтеза белка
- •2.4.3.Антибиотики, действующие на уровне трансляции
- •2.5.Трансляция у эукариот
- •2.5.1.Особенности первичной структуры эукариотических мРнк
- •2.5.2.Инициация биосинтеза белка эукариотическими рибосомами
- •2.5.3.Элонгация полипептидных цепей
- •2.5.4.Терминация трансляции
- •2.5.5.Трансляция в митохондриях
- •2.5.6.Трансляция в хлоропластах.
- •Глава 3.Основные пути регуляции экспрессии генов
- •3.1.Регуляция экспрессии генов на уровне транскрипции у прокариот
- •3.1.1.Регуляция на уровне инициации транскрипции
- •3.1.2.Регуляция синтеза рнк на уровне элонгации и терминации
- •3.2.Регуляция экспрессии генов на уровне транскрипции у эукариот
- •3.2.1.Передача сигнала и вторичные мессенджеры
- •Рецепторы мембран, осуществляющие трансмембранный перенос сигнала
- •3.2.2.Механизмы позитивной регуляции транскрипции
- •Функциональные домены факторов транскрипции
- •3.2.3.Механизмы негативной регуляции транскрипции
- •3.2.4.Структура хроматина как специфический регулятор экспрессии генов
- •3.2.5.Импринтинг
- •3.2.6.Метилирование днк в регуляции транскрипции
- •Факторы транскрипции позвоночных, на активность которых оказывает влияние метилирование остатков цитозина в узнаваемых ими регуляторных последовательностях нуклеотидов
- •3.3.Посттранскрипционная регуляция экспрессии генов
- •3.3.1.Направленный транспорт, внутриклеточная локализация и депонирование мРнк
- •3.3.2.Сплайсинг рнк в регуляции экспрессии генов
- •3.3.3.Избирательная деградация мРнк
- •3.4.Регуляция экспрессии генов на уровне трансляции
- •3.4.1.Регуляция инициации трансляции
- •3.4.2.Регуляция элонгации синтеза полипептидных цепей
- •3.4.3.Регуляция терминации трансляции
- •3.5.Синтез белков, содержащих остатки селеноцистеина
- •3.6.Посттрансляционная регуляция экспрессии генов
- •3.6.1.Последствия фолдинга вновь синтезированных полипептидных цепей
- •3.6.2.Специфические протеиназы в посттрансляционном процессинге белков
- •3.6.3.Убиквитин-зависимая система протеолиза в регулируемой деградации белков
- •3.6.4.Сплайсинг белков
- •3.6.5.Другие посттрансляционные модификации белков
- •Глава 4.Воспроизведение генетической информации
- •4.1.Репликация днк
- •4.1.1.Белки, участвующие в репликации днк
- •4.1.2.Репликативная вилка e. Coli и бактериофага t4
- •4.1.3.Особенности функционирования репликативной вилки эукариот
- •4.2.Регуляция репликации днк
- •4.2.1.Инициация репликации днк у e. Coli и ее регуляция
- •4.2.2.Регуляция репликации плазмиды ColE1
- •4.3.Особенности репликации линейных геномов
- •4.3.1.Линейные хромосомы бактерий
- •4.3.2.Репликаторы эукариот
- •4.3.3.Репликация теломерных участков эукариотических хромосом
- •4.3.4.Пространственная организация синтеза днк у эукариот
- •Глава 5.Защита генетической информации
- •5.1.Мутации
- •5.1.1.Основные источники мутаций и методы определения мутагенной активности
- •5.1.3.Мутаторный фенотип
- •5.1.4.Экспансия днк
- •5.1.5.Адаптивные мутации
- •5.1.6.Механизмы защиты генома от мутаций
- •5.2.Репарация днк
- •5.2.1.Основные механизмы репарации поврежденной днк
- •5.2.2.Эксцизионная репарация в клетках животных
- •Белки животных, участвующие в ner
- •5.2.3.Гомологичная рекомбинация в репарации днк
- •5.2.4.Репарация ошибочно спаренных нуклеотидов
- •5.2.5.Полимераза поли(adp-рибозы) в репарации днк у эукариот
- •5.3.Альтруистичная днк
- •5.3.1.Парадокс возможности существования многоклеточных организмов
- •5.3.2.Повышение информационной стабильности генома избыточными последовательностями
- •5.3.3.Селективная защита генов от мутаций
- •5.3.4.Высокоупорядоченное расположение летальных генов на хромосомах
- •5.3.5.Возможный смысл парадокса с
- •Глава 6.Современная концепция гена
- •Часть II основные направления развития прикладной молекулярной генетики Введение
- •Часть II. Искусственные генетические системы Глава 7.Принципы генной инженерии
- •7.1.Основные ферменты, используемые в генной инженерии
- •7.1.1.Рестриктазы и днк-метилазы
- •7.1.3.Ферменты матричного синтеза днк и рнк
- •7.1.4.Другие ферменты
- •7.2.Векторы
- •7.2.1.Плазмидные векторы
- •7.2.2.Векторы на основе фага
- •7.2.3.Космиды и фазмиды
- •7.2.4.Сверхъемкие векторы yac, bac и pac
- •7.2.5.Интегрирующие и челночные (бинарные) векторы
- •7.2.6.Конструирование экспрессирующих векторов и их функционирование
- •7.2.7.Векторы для переноса днк в клетки животных и растений
- •7.3.Клонотеки генов
- •7.3.1.Получение клонотек генов
- •7.3.2.Введение рекомбинантных днк в клетки
- •7.3.3.Методы скрининга клонотек генов
- •7.4.Эукариотические системы экспрессии рекомбинантных генов, основанные на культурах клеток
- •7.4.1.Клетки яичников китайских хомячков (линия cho)
- •7.4.2.Клетки мышиной миеломы (линия Sp2/0)
- •7.4.3.Клетки селезенки мышей (линия mel)
- •7.4.4.Клетки африканской зеленой мартышки (линия cos)
- •7.4.5.Клетки насекомых, зараженные бакуловирусами
- •7.4.6.Сравнение эффективности рассмотренных систем экспрессии
- •7.5.Бесклеточные белоксинтезирующие системы
- •7.5.1.Прокариотические системы
- •7.5.2.Эукариотические системы
- •7.5.3.Проточные системы
- •7.6.Другие современные методы исследования генов
- •7.6.1.Рестрикционное картирование генов
- •7.6.2."Прогулки и прыжки по хромосомам"
- •7.6.4.Футпринтинг
- •7.7.Стратегия выделения нового гена
- •Глава 8.Направленный мутагенез и белковая инженерия
- •8.1.Методы направленного получения мутаций
- •8.1.1.Получение делеций и вставок
- •8.1.2.Химический мутагенез
- •8.1.3.Сайт-специфический мутагенез с использованием олигонуклеотидов
- •8.1.4.Полимеразная цепная реакция в направленном мутагенезе
- •8.2.Белковая инженерия
- •8.2.1.Библиотеки пептидов и эпитопов
- •8.2.2.Белки-репортеры в гибридных белках
- •8.2.3.Гибридные токсины
- •8.2.4.Подходы к созданию новых ферментов
- •8.2.5. Субтилигаза в лигировании пептидов
- •8.3.Концепция ксенобиоза
- •Глава 9.Антисмысловые рнк, рибозимы и дезоксирибозимы
- •9.1.Антисмысловые рнк и олигонуклеотиды
- •9.1.1.Механизм действия антисмысловых рнк
- •9.1.2.Использование антисмысловых рнк
- •9.1.3.Природные антисмысловые рнк
- •9.1.4.Антисмысловые рнк и патология: возможный механизм возникновения доминантных мутаций
- •9.2.Рибозимы и дезоксирибозимы
- •9.2.1.Типы рибозимов
- •9.2.2.Свойства рибозимов
- •9.2.3.Рибозимы как лекарственные средства
- •9.2.4.Репарация мутантных рнк с помощью рибозимов, осуществляющих транс-сплайсинг
- •9.2.5.Дезоксирибозимы
- •9.3.Аптамеры
- •9.4.Молекулы рнк у истоков жизни
- •9.4.1.Молекулы рнк в качестве рнк-репликаз
- •9.4.2.Возможность синтеза полипептидных цепей молекулами рнк
- •Глава 10.Трансгенные животные и растения
- •10.1.Способы получения трансгенных многоклеточных организмов
- •10.2.Экспрессия трансгенов
- •10.3.Использование трансгенов у животных
- •10.3.1.Исследование механизмов экспрессии генов
- •10.3.2.Токсигены в исследовании дифференцировки соматических клеток в онтогенезе
- •10.3.3.Изменение физиологического статуса лабораторных и сельскохозяйственных животных
- •10.3.4.Моделирование наследственных и приобретенных заболеваний человека
- •10.4.Трансгенные растения
- •10.5.Генотерапия наследственных и приобретенных заболеваний
- •10.5.1.Способы доставки новых генов в геном человека
- •10.5.2.Управление экспрессией трансгенов в клетках-мишенях
- •10.5.3.Современные достижения генотерапии онкологических заболеваний
- •10.5.4.Ближайшие перспективы использования генотерапии
- •10.5.5.Успехи генотерапии в модельных экспериментах
- •10.5.6.Проблемы, возникающие в связи с практическим применением генотерапии
- •Глава 11.Днк-диагностика и днк-типирование
- •11.1.1.Получение клинического генетического материала
- •11.1.2.Диагностика заболеваний
- •11.2.2.Идентификация личности на основе минисателлитной днк: определение отцовства
- •11.3.Микроматрицы и микрочипы днк
- •11.3.1.Методы создания микроматриц днк
- •11.3.2.Ограничения в использовании микроматриц днк
- •11.3.3.Использование микроматриц днк в фундаментальных и прикладных исследованиях
- •Глава 12.Картирование и определение первичной структуры генома человека
- •12.1.Основные подходы к картированию генома человека
- •12.1.1.Генетические карты сцепления
- •12.1.2.Пцр в исследованиях генома человека
- •12.1.3.Физические карты низкого разрешения
- •12.1.4.Физические карты высокого разрешения
- •12.2.Определение полной первичной структуры днк генома человека
- •12.3.Базы данных получаемой информации
- •Заключение
- •Рекомендуемая литература
7.2.4.Сверхъемкие векторы yac, bac и pac
Рис. II.9. Схема клонирования сверхдлинных молекул ДНК с использованием вектора YAC
1 – линеаризация ДНК вектора рестриктазой BamHI;
2 – расщепление линеаризованной ДНК вектора рестриктазой EcoRI с образованием "плечей"; 3 – введение в вектор клонируемого EcoRI-фрагмента ДНК
Хромосомы высших организмов содержат в своем составе протяженные молекулы ДНК. Например, длина ДНК одной из типичных хромосом человека составляет 100–200 миллионов пар оснований (м.п.о.). Исследование генов в хромосомах высших растений, животных и человека потребовало создания векторов для клонирования фрагментов ДНК длиной в несколько сотен тысяч пар оснований. Этим задачам отвечает недавно созданная система для клонирования сверхдлинных молекул ДНК на основе искусственно полученной мини-хромосомы дрожжей YAC (yeast artificial chromosome). YAC-вектор представляет собой кольцевую молекулу ДНК, содержащую ряд генетических элементов, которые позволяют ей существовать во внехромосомном состоянии в клетках дрожжей (рис. II.9).
Вектор заключает в себе две теломерные последовательности нуклеотидов TEL, необходимые для репликации концов мини-хромосомы, и область начала репликации ARS1, соединенную с последовательностью центромеры. Все эти функциональные элементы требуются для репликации YAC-вектора и его правильной передачи в дочерние ядра во время митоза. Кроме того, вектор содержит два селектируемых маркера TRP, восстанавливающих способность к росту ауксотрофных по триптофану клеток дрожжей в отсутствие экзогенного триптофана, а также маркер URA3, компенсирующий генетический дефект клеток дрожжей, который нарушает биосинтез урацила. В векторе имеется также ген супрессорной тРНК sup4, являющийся селектируемым маркером для поддержания вектора в мутантных бактериальных клетках, содержащих амбер-мутации в жизненно важных генах. Помимо этого, он обладает последовательностями нуклеотидов, необходимыми для его репликации в бактериальных клетках.
При подготовке к клонированию YAC-вектор, выделенный в виде плазмиды, расщепляют рестриктазой BamHI и отделяют от образовавшегося короткого фрагмента ДНК, который не требуется для репликации YAC-вектора в дрожжах (этап 1). После этого проводят второе расщепление вектора рестриктазой EcoRI, сопровождающееся образованием двух его "плеч", каждое из которых на одном из концов содержит теломерные последовательности хромосомы дрожжей (этап 2). На заключительном этапе (3) полученные "плечи" лигируют с крупными EcoRI-фрагментами клонируемой ДНК, которые получают путем частичного расщепления высокомолекулярной хромосомной ДНК, предназначенной для клонирования. Полученными таким образом рекомбинантными ДНК трансформируют протопласты клеток дрожжей, и образовавшиеся трансформанты отбирают на селективной твердой питательной среде. В таком векторе удавалось осуществлять клонирование фрагментов ДНК длиной до 700 т.п.о.
При всех своих достоинствах системы клонирования, основанные на векторах семейства YAC, обладают рядом существенных недостатков. В рекомбинантных ДНК, поддерживаемых в таких системах, часто возникают внутренние делеции. Кроме того, при введении рекомбинантных ДНК в клетки дрожжей иногда имеет место проникновение в одну клетку нескольких молекул вектора со вставками. В итоге отдельные клоны дрожжевых клеток могут содержать несколько несцепленных друг с другом молекул рекомбинантных ДНК, а рекомбинация между ними вообще может приводить к образованию химерных молекул. Все это очень затрудняет физическое картирование генов в хромосомах исследуемых объектов. Для преодоления такого рода трудностей были сконструированы альтернативные векторные системы, среди которых наиболее популярными в настоящее время являются системы, основанные на искусственных хромосомах бактерий – BAC (bacterial artificial chromosome).
Рис. II.10. Вектор pBAC108L – представитель семейства BAC-векторов
В векторных системах BAC используется ДНК хорошо изученного полового фактора (F-фактора) E. coli – гигантской плазмиды мужских бактериальных клеток, которые являются донорами бактериальной ДНК при конъюгации с женскими клетками (рис. II.10). Типичный F-фактор содержит гены oriS, repE, parA и parB, регулирующие его собственную репликацию и контролирующие число его копий в бактериальных клетках. В частности, гены oriS и repE обеспечивают однонаправленную репликацию F-фактора, а гены parA и parB поддерживают число его копий на уровне одной-двух на бактериальную клетку. Классический вектор BAC (pBAC108L) включает в себя все эти гены, а также ген устойчивости к хлорамфениколу, используемый в качестве селектируемого маркера. Вектор содержит также сегмент ДНК, по которому производится клонирование. В этом сегменте имеется типичный полилинкер, а также два уникальных сайта рестрикции HindIII и BamHI, фланкированные промоторами T7- и Sp6-РНК-полимераз. Эти промоторы могут быть использованы для получения РНК-зондов, необходимых для осуществления "прогулок по хромосомам" (раздел 7.6.2), а также прямого секвенирования клонированной ДНК в месте стыковки с вектором. Кроме того, во фрагменте имеется сайт cosN, обеспечивающий расщепление вектора со вставкой в уникальном месте с помощью терминазы фага без применения ферментов рестрикции. Этот фермент используется бактериофагом для специфического разрезания конкатемеров своей хромосомы при упаковке в фаговые частицы. Для той же цели может быть применен и сайт loxP бактериофага Р1, который является мишенью для фаговой эндонуклеазы Cre. Эти сайты используются для получения специфических концов клонированной ДНК с целью ее дальнейшего рестрикционного картирования путем введения концевой метки с последующим неполным расщеплением с помощью рестриктаз и электрофоретическим разделением образовавшихся фрагментов (см. раздел 7.6.1).
Современные BAC-векторы позволяют клонировать фрагменты ДНК длиной до 300 т.п.о. и выше. Рекомбинантные молекулы вводятся в клетки E. coli с помощью электропорации (см. раздел 7.3.2), причем эффективность образования трансформантов в 10–100 раз выше, чем при обычной трансформации сферопластов дрожжей векторами семейства YAC. Это позволяет уменьшить исходное количество ДНК, необходимое для конструирования репрезентативных клонотек генов (см. раздел 7.3). При скрининге таких клонотек используются традиционные методы работы с бактериальными колониями (раздел 7.3.3). В отличие от YAC-ДНК, которая находится в клетках дрожжей в линейной форме, BAC-векторы со вставками, как и традиционные F’-факторы, существуют в бактериальных клетках в виде кольцевых суперскрученных молекул. Это облегчает их выделение и последующую работу с рекомбинантными молекулами ДНК в растворе, а кроме того, допускает простое повторное введение в бактериальные клетки этих ДНК, выделенных минипрепаративными методами. Поскольку рекомбинантные BAC-векторы существуют в бактериальных клетках в виде одной копии, исключаются совместное клонирование в одной клетке разных фрагментов ДНК и образование химерных молекул, что весьма существенно для физического картирования больших геномов методами "снизу вверх" (см. раздел 12.1.4). Весьма существенным свойством системы клонирования, основанной на векторах семейства BAC, является ее генетическая стабильность. Исходная структура клонированных фрагментов ДНК в пределах точности использованных методов сохраняется в таких векторах даже после 100 серийных пересевов бактериальных клеток, содержащих рекомбинантные молекулы ДНК. Все вышеперечисленные свойства переводят векторы BAC в разряд сверхъемких векторов нового поколения.
В заключение следует упомянуть о семействе векторов PAC (P1-derived artificial chromosome), также часто используемых в современных исследованиях. Векторы этой серии содержат гены бактериофага Р1, обеспечивающие репликацию фаговой хромосомы в зараженных бактериальных клетках. Рекомбинантные ДНК на их основе (размер вставки 150–200 т.п.о.) также вводятся в бактериальные клетки с помощью электропорации.