
- •Часть I. Механизмы хранения и реализации генетической информации 17
- •Глава 1. Геном 25
- •Глава 2. Реализация генетической информации при экспрессии генов 61
- •Глава 3. Основные пути регуляции экспрессии генов 224
- •Глава 4. Воспроизведение генетической информации 390
- •Глава 5. Защита генетической информации 432
- •Глава 6. Современная концепция гена 522
- •Часть II. Искусственные генетические системы 531
- •Глава 7. Принципы генной инженерии 532
- •Глава 8. Направленный мутагенез и белковая инженерия 629
- •Глава 9. Антисмысловые рнк, рибозимы и дезоксирибозимы 679
- •Глава 10. Трансгенные животные и растения 722
- •Глава 11. Днк-диагностика и днк-типирование 755
- •Глава 12. Картирование и определение первичной структуры генома человека 797
- •Предисловие редактора
- •Предисловие автора
- •Часть I. Механизмы хранения и реализации генетической информации введение
- •Глава 1.Геном
- •1.1.Гены и хромосомы
- •1.2.Геном прокариот
- •1.2.1.Геном вирусов
- •1.2.2.Нуклеоид бактериальной клетки
- •1.2.3.Геном архебактерий
- •1.2.4.Минимальный размер генома одноклеточных организмов
- •1.3.Геном эукариот
- •1.3.1.Последовательности нуклеотидов эукариотического генома
- •1.3.2.Хроматин
- •1.3.3.Роль днк-топоизомераз в обеспечении структуры и функционирования хроматина
- •Глава 2.Реализация генетической информации при экспрессии генов
- •2.1.Транскрипция
- •Характеристики белковых компонентов холофермента
- •2.1.2.Единицы транскрипции (транскриптоны)
- •2.1.3.Этапы транскрипции
- •2.1.4.Хроматин во время транскрипции
- •2.2.Котранскрипционные и посттранскрипционные модификации рнк
- •2.2.1.Процессинг рнк у бактерий
- •2.2.2.Редактирование пре-мРнк
- •Различные способы редактирования мРнк
- •Редактирование рнк у животных и их вирусов
- •2.2.3.Другие модификации эукариотических мРнк
- •Механизм прямой и обратной реакций аутосплайсинга
- •2.3.Функциональная компартментализация ядра
- •2.3.1.Интерфазные хромосомы в ядре
- •2.3.2.Ядрышко
- •2.3.3.Пространственная организация синтеза мРнк
- •2.3.4.Ядерные тельца и домены
- •2.3.5.Компартментализованное ядро
- •2.4.Биосинтез белка рибосомами бактерий
- •2.4.1.Рибосомы
- •2.4.2.Этапы биосинтеза белка
- •2.4.3.Антибиотики, действующие на уровне трансляции
- •2.5.Трансляция у эукариот
- •2.5.1.Особенности первичной структуры эукариотических мРнк
- •2.5.2.Инициация биосинтеза белка эукариотическими рибосомами
- •2.5.3.Элонгация полипептидных цепей
- •2.5.4.Терминация трансляции
- •2.5.5.Трансляция в митохондриях
- •2.5.6.Трансляция в хлоропластах.
- •Глава 3.Основные пути регуляции экспрессии генов
- •3.1.Регуляция экспрессии генов на уровне транскрипции у прокариот
- •3.1.1.Регуляция на уровне инициации транскрипции
- •3.1.2.Регуляция синтеза рнк на уровне элонгации и терминации
- •3.2.Регуляция экспрессии генов на уровне транскрипции у эукариот
- •3.2.1.Передача сигнала и вторичные мессенджеры
- •Рецепторы мембран, осуществляющие трансмембранный перенос сигнала
- •3.2.2.Механизмы позитивной регуляции транскрипции
- •Функциональные домены факторов транскрипции
- •3.2.3.Механизмы негативной регуляции транскрипции
- •3.2.4.Структура хроматина как специфический регулятор экспрессии генов
- •3.2.5.Импринтинг
- •3.2.6.Метилирование днк в регуляции транскрипции
- •Факторы транскрипции позвоночных, на активность которых оказывает влияние метилирование остатков цитозина в узнаваемых ими регуляторных последовательностях нуклеотидов
- •3.3.Посттранскрипционная регуляция экспрессии генов
- •3.3.1.Направленный транспорт, внутриклеточная локализация и депонирование мРнк
- •3.3.2.Сплайсинг рнк в регуляции экспрессии генов
- •3.3.3.Избирательная деградация мРнк
- •3.4.Регуляция экспрессии генов на уровне трансляции
- •3.4.1.Регуляция инициации трансляции
- •3.4.2.Регуляция элонгации синтеза полипептидных цепей
- •3.4.3.Регуляция терминации трансляции
- •3.5.Синтез белков, содержащих остатки селеноцистеина
- •3.6.Посттрансляционная регуляция экспрессии генов
- •3.6.1.Последствия фолдинга вновь синтезированных полипептидных цепей
- •3.6.2.Специфические протеиназы в посттрансляционном процессинге белков
- •3.6.3.Убиквитин-зависимая система протеолиза в регулируемой деградации белков
- •3.6.4.Сплайсинг белков
- •3.6.5.Другие посттрансляционные модификации белков
- •Глава 4.Воспроизведение генетической информации
- •4.1.Репликация днк
- •4.1.1.Белки, участвующие в репликации днк
- •4.1.2.Репликативная вилка e. Coli и бактериофага t4
- •4.1.3.Особенности функционирования репликативной вилки эукариот
- •4.2.Регуляция репликации днк
- •4.2.1.Инициация репликации днк у e. Coli и ее регуляция
- •4.2.2.Регуляция репликации плазмиды ColE1
- •4.3.Особенности репликации линейных геномов
- •4.3.1.Линейные хромосомы бактерий
- •4.3.2.Репликаторы эукариот
- •4.3.3.Репликация теломерных участков эукариотических хромосом
- •4.3.4.Пространственная организация синтеза днк у эукариот
- •Глава 5.Защита генетической информации
- •5.1.Мутации
- •5.1.1.Основные источники мутаций и методы определения мутагенной активности
- •5.1.3.Мутаторный фенотип
- •5.1.4.Экспансия днк
- •5.1.5.Адаптивные мутации
- •5.1.6.Механизмы защиты генома от мутаций
- •5.2.Репарация днк
- •5.2.1.Основные механизмы репарации поврежденной днк
- •5.2.2.Эксцизионная репарация в клетках животных
- •Белки животных, участвующие в ner
- •5.2.3.Гомологичная рекомбинация в репарации днк
- •5.2.4.Репарация ошибочно спаренных нуклеотидов
- •5.2.5.Полимераза поли(adp-рибозы) в репарации днк у эукариот
- •5.3.Альтруистичная днк
- •5.3.1.Парадокс возможности существования многоклеточных организмов
- •5.3.2.Повышение информационной стабильности генома избыточными последовательностями
- •5.3.3.Селективная защита генов от мутаций
- •5.3.4.Высокоупорядоченное расположение летальных генов на хромосомах
- •5.3.5.Возможный смысл парадокса с
- •Глава 6.Современная концепция гена
- •Часть II основные направления развития прикладной молекулярной генетики Введение
- •Часть II. Искусственные генетические системы Глава 7.Принципы генной инженерии
- •7.1.Основные ферменты, используемые в генной инженерии
- •7.1.1.Рестриктазы и днк-метилазы
- •7.1.3.Ферменты матричного синтеза днк и рнк
- •7.1.4.Другие ферменты
- •7.2.Векторы
- •7.2.1.Плазмидные векторы
- •7.2.2.Векторы на основе фага
- •7.2.3.Космиды и фазмиды
- •7.2.4.Сверхъемкие векторы yac, bac и pac
- •7.2.5.Интегрирующие и челночные (бинарные) векторы
- •7.2.6.Конструирование экспрессирующих векторов и их функционирование
- •7.2.7.Векторы для переноса днк в клетки животных и растений
- •7.3.Клонотеки генов
- •7.3.1.Получение клонотек генов
- •7.3.2.Введение рекомбинантных днк в клетки
- •7.3.3.Методы скрининга клонотек генов
- •7.4.Эукариотические системы экспрессии рекомбинантных генов, основанные на культурах клеток
- •7.4.1.Клетки яичников китайских хомячков (линия cho)
- •7.4.2.Клетки мышиной миеломы (линия Sp2/0)
- •7.4.3.Клетки селезенки мышей (линия mel)
- •7.4.4.Клетки африканской зеленой мартышки (линия cos)
- •7.4.5.Клетки насекомых, зараженные бакуловирусами
- •7.4.6.Сравнение эффективности рассмотренных систем экспрессии
- •7.5.Бесклеточные белоксинтезирующие системы
- •7.5.1.Прокариотические системы
- •7.5.2.Эукариотические системы
- •7.5.3.Проточные системы
- •7.6.Другие современные методы исследования генов
- •7.6.1.Рестрикционное картирование генов
- •7.6.2."Прогулки и прыжки по хромосомам"
- •7.6.4.Футпринтинг
- •7.7.Стратегия выделения нового гена
- •Глава 8.Направленный мутагенез и белковая инженерия
- •8.1.Методы направленного получения мутаций
- •8.1.1.Получение делеций и вставок
- •8.1.2.Химический мутагенез
- •8.1.3.Сайт-специфический мутагенез с использованием олигонуклеотидов
- •8.1.4.Полимеразная цепная реакция в направленном мутагенезе
- •8.2.Белковая инженерия
- •8.2.1.Библиотеки пептидов и эпитопов
- •8.2.2.Белки-репортеры в гибридных белках
- •8.2.3.Гибридные токсины
- •8.2.4.Подходы к созданию новых ферментов
- •8.2.5. Субтилигаза в лигировании пептидов
- •8.3.Концепция ксенобиоза
- •Глава 9.Антисмысловые рнк, рибозимы и дезоксирибозимы
- •9.1.Антисмысловые рнк и олигонуклеотиды
- •9.1.1.Механизм действия антисмысловых рнк
- •9.1.2.Использование антисмысловых рнк
- •9.1.3.Природные антисмысловые рнк
- •9.1.4.Антисмысловые рнк и патология: возможный механизм возникновения доминантных мутаций
- •9.2.Рибозимы и дезоксирибозимы
- •9.2.1.Типы рибозимов
- •9.2.2.Свойства рибозимов
- •9.2.3.Рибозимы как лекарственные средства
- •9.2.4.Репарация мутантных рнк с помощью рибозимов, осуществляющих транс-сплайсинг
- •9.2.5.Дезоксирибозимы
- •9.3.Аптамеры
- •9.4.Молекулы рнк у истоков жизни
- •9.4.1.Молекулы рнк в качестве рнк-репликаз
- •9.4.2.Возможность синтеза полипептидных цепей молекулами рнк
- •Глава 10.Трансгенные животные и растения
- •10.1.Способы получения трансгенных многоклеточных организмов
- •10.2.Экспрессия трансгенов
- •10.3.Использование трансгенов у животных
- •10.3.1.Исследование механизмов экспрессии генов
- •10.3.2.Токсигены в исследовании дифференцировки соматических клеток в онтогенезе
- •10.3.3.Изменение физиологического статуса лабораторных и сельскохозяйственных животных
- •10.3.4.Моделирование наследственных и приобретенных заболеваний человека
- •10.4.Трансгенные растения
- •10.5.Генотерапия наследственных и приобретенных заболеваний
- •10.5.1.Способы доставки новых генов в геном человека
- •10.5.2.Управление экспрессией трансгенов в клетках-мишенях
- •10.5.3.Современные достижения генотерапии онкологических заболеваний
- •10.5.4.Ближайшие перспективы использования генотерапии
- •10.5.5.Успехи генотерапии в модельных экспериментах
- •10.5.6.Проблемы, возникающие в связи с практическим применением генотерапии
- •Глава 11.Днк-диагностика и днк-типирование
- •11.1.1.Получение клинического генетического материала
- •11.1.2.Диагностика заболеваний
- •11.2.2.Идентификация личности на основе минисателлитной днк: определение отцовства
- •11.3.Микроматрицы и микрочипы днк
- •11.3.1.Методы создания микроматриц днк
- •11.3.2.Ограничения в использовании микроматриц днк
- •11.3.3.Использование микроматриц днк в фундаментальных и прикладных исследованиях
- •Глава 12.Картирование и определение первичной структуры генома человека
- •12.1.Основные подходы к картированию генома человека
- •12.1.1.Генетические карты сцепления
- •12.1.2.Пцр в исследованиях генома человека
- •12.1.3.Физические карты низкого разрешения
- •12.1.4.Физические карты высокого разрешения
- •12.2.Определение полной первичной структуры днк генома человека
- •12.3.Базы данных получаемой информации
- •Заключение
- •Рекомендуемая литература
7.2.Векторы
Ферменты, описанные в предыдущем разделе, позволяют производить тонкие манипуляции как с протяженными молекулами ДНК, так и с их фрагментами. В частности, с помощью рестриктаз можно с большой точностью разрезать молекулы ДНК, а образовавшиеся в результате фрагменты соединять в любой желаемой последовательности друг с другом, восстанавливая сахаро-фосфатный остов молекулы ДНК с помощью ДНК-лигазы. Однако с использованием только этих ферментов еще нельзя решить одну из основных методических задач молекулярной генетики – выделение любой требуемой нуклеотидной последовательности в чистом виде и в количестве, достаточном для исследования этих последовательностей биохимическими методами. Исключение составляет метод ПЦР, однако его применение ограничивается короткими последовательностями нуклеотидов.
Основная идея, позволяющая решать эту задачу, заключается в том, чтобы присоединить исследуемые фрагменты ДНК к молекуле-переносчику, которая могла бы автономно существовать внутри бактериальных или эукариотических клеток в виде одной или нескольких копий и передаваться вместе со встроенным в нее фрагментом ДНК от одной клетки к другой. Такие молекулы-переносчики фрагментов нуклеиновых кислот были созданы, их называют векторами, и они являются одним из важнейших инструментов генной инженерии.
Идеальная векторная молекула должна обладать несколькими обязательными свойствами. Во-первых, любой вектор должен длительное время существовать в популяции клеток-хозяев, т.е. реплицироваться автономно или вместе с хромосомами клеток. Во-вторых, в любом векторе должны быть биохимические или генетические маркеры, которые позволяли бы обнаруживать его присутствие в клетках. В-третьих, структура векторной молекулы должна допускать встраивание в нее чужеродной последовательности нуклеотидов без нарушения ее функциональной целостности. Для конструирования векторов в генной инженерии используют небольшие молекулы нуклеиновых кислот, способные к автономной репликации в бактериальных и эукариотических клетках – плазмиды, хромосомы вирусов, а также фрагменты хромосом эукариотических клеток.
7.2.1.Плазмидные векторы
Рис. II.5. Различные векторы для клонирования ДНК и их рестрикционные карты
Обозначены положения уникальных сайтов рестрикции, а также функционально значимых генов
а – векторная плазмида pBR322; б – экспрессирующая векторная плазмида pUC18; в – векторная плазмида AN7, предназначенная для отбора рекомбинантных клонов с использованием гомологичной рекомбинации; г – многофункциональная векторная плазмида Bluescript
Первые эффективные векторы для клонирования фрагментов чужеродной ДНК, не утратившие своего значения и поныне, были получены с использованием бактериальных плазмид. Большая серия векторных плазмид, обозначенных символом pBR, создана на основе репликона природной плазмиды ColEI, придающей клеткам E. coli устойчивость к колицину путем его объединения с генами устойчивости к антибиотикам. Таким образом, бактериальные клетки, несущие подобные комбинированные плазмиды, приобретали устойчивость к соответствующим антибиотикам, и их было легко отличить от бесплазмидных клеток путем простого посева на питательную среду с антибиотиками. Генетическая карта одного широко распространенного вектора этой серии – pBR322 изображена на рис. II.5,а. Такая плазмида представляет собой кольцевую ковалентно замкнутую молекулу ДНК длиной 4363 п.о. Последовательность нуклеотидов pBR322 полностью известна. Плазмида содержит гены устойчивости к тетрациклину (Tc) и ампициллину (Ap), которые были перенесены в плазмиду pBR322 из плазмиды pSC101 и транспозона Tn3 соответственно. Оба этих гена являются селектируемыми генетическими маркерами плазмиды, т.е. позволяют проводить отбор бактериальных клеток с плазмидой pBR322 по их способности к росту на питательных средах в присутствии тетрациклина и(или) ампициллина. Плазмида pBR322 содержит также обеспечивающий ее стабильную репликацию в клетках E. coli участок ДНК, который включает область начала репликации (ori). Характерной чертой плазмиды pBR322, как и любого современного вектора, является наличие в ней нескольких уникальных сайтов рестрикции, обозначенных на генетической карте. Следует иметь в виду, что встраивание в плазмиду клонируемых чужеродных фрагментов ДНК по сайтам рестрикции, расположенным в генах Ар или Tc (например PstI или BamHI), будет нарушать целостность этих генов и их функциональную активность. В результате происходит утрата бактериальными клетками, содержащими рекомбинантные плазмиды, устойчивости к соответствующим антибиотикам. По такому признаку легко различить бактериальные клетки, не содержащие плазмиды (не растут в присутствии ампициллина и тетрациклина), клетки с плазмидой, не содержащей вставки клонируемой ДНК (растут в присутствии обоих антибиотиков), и клетки с рекомбинантными плазмидами (в зависимости от локализации вставки могут расти на среде только с одним из двух вышеупомянутых антибиотиков). Следовательно, наличие в векторных молекулах селектируемых маркеров резко повышает эффективность клонирования из-за возможности проведения быстрого отбора рекомбинантных плазмид на селективных питательных средах.
Помимо генов устойчивости к антибиотикам в качестве селектируемых маркеров используют и другие гены или их фрагменты. В частности, для этих целей часто применяются гены различных ферментов, присутствие которых в клетках в составе плазмиды обнаруживают по появлению соответствующей ферментативной активности. В часто используемых векторах серии pUC таким селектируемым маркером является 5’-концевая часть гена ‑галактозидазы E. coli – lacZ’ (см. рис. II.5,б). Эта часть гена, находящаяся под контролем lac-промотора, кодирует N-концевую часть -галактозидазы (так называемый -пептид), которая путем объединения с недостающей С-концевой частью полипептида без образования пептидной связи восстанавливает ферментативную активность -галактозидазы. ‑Галактозидаза обладает способностью расщеплять искусственный субстрат Xgal (5-бром-4-хлор-3-индолил--D-галактопиранозид) с образованием окрашенного в голубой цвет продукта реакции. В том случае, когда в бактериальных клетках, которые содержат в хромосоме недостающую экспрессирующуюся 3’-концевую часть гена lacZ и выращиваются на среде с Xgal, в результате комплементации -пептидом вектора появляется активность -галактозидазы, образованные этими клетками бактериальные колонии окрашиваются в голубой цвет. Уникальные сайты рестрикции для клонирования ДНК локализованы в начале гена -галактозидазы в составе полилинкера (синтетической последовательности нуклеотидов, содержащей несколько перекрывающихся уникальных сайтов рестрикции), который не нарушает функциональной целостности последовательности нуклеотидов -пептида. Вставка рекомбинантной ДНК в эти векторы разрывает структурную часть гена -галактозидазы и инактивирует его, в связи с чем колонии бактерий с подобными рекомбинантными плазмидами, выросшие на питательной среде с Xgal, не окрашены. Поскольку векторы серии pUC одновременно содержат и ген устойчивости к ампициллину, отбор бактерий, несущих рекомбинантные плазмиды, можно проводить одновременно по этим двум маркерам. На питательной среде с ампициллином и Xgal вырастают только бактерии, устойчивые к антибиотику, т.е. содержащие плазмиду pUC, а среди выросших колоний лишь неокрашенные содержат вставку чужеродной ДНК. В качестве селектируемых маркеров в векторных молекулах часто используются гены, присутствие которых может быть обнаружено косвенно по комплементации генетических дефектов бактериальных клеток-хозяев, что делает их жизнеспособными в определенных селективных условиях. Подробнее об одной из таких систем см. в разделе 7.3.3.
За короткий период развития генной инженерии было сконструировано труднообозримое количество векторных плазмид, обеспечивающих конкретные потребности исследователей. Одной из вершин генно-инженерного искусства, прекрасно иллюстрирующей возможности генной инженерии, в настоящее время являются полифункциональные векторы серии Bluescript, полученные фирмой "Stratagene" (США) (см. рис. II.5,г). Вектор Bluescript M13+ представляет собой кольцевую ковалентно замкнутую молекулу ДНК длиной около 3 т.п.о. Он включает в себя ген устойчивости к ампициллину Ampr, ген -галактозидазы lacZ, в N-концевую часть которого встроен полилинкер, содержащий уникальные сайты рестрикции для 21 рестриктазы, промоторно-операторную область lacZ, а также ген lac-репрессора lacI. В результате встраивания клонируемого фрагмента ДНК в полилинкер происходят разрыв кодирующей части гена lacZ и инактивация -галактозидазы, что, как и в случае вектора pUC18, можно обнаружить по исчезновению окраски колоний бактерий, содержащих этот вектор со вставкой клонированной ДНК. Кроме того, встроенный в полилинкер фрагмент ДНК попадает под контроль промоторно-операторной регуляторной последовательности гена lacZ и в присутствии индуктора IPTG может быть экспрессирован в клетках E. coli. В дополнение к этому полилинкер в векторной плазмиде содержит на одном конце промотор для Т7-, а на другом – для Т3-РНК-полимераз, которые ориентированы навстречу друг другу. Это позволяет транскрибировать любую из цепей клонированного фрагмента ДНК in vitro с помощью той или другой РНК-полимеразы и получать препаративные количества мРНК или же комплементарной ей антисмысловой РНК. Кроме того, вектор Bluescript M13+ обладает межгенной областью (IG) фага f1, родственного фагу M13. Эта область детерминирует все цис-действующие функциональные последовательности нуклеотидов фага, необходимые для репликации его хромосомы и упаковки ее в фаговые частицы. В присутствии фага-помощника M13 происходит преимущественная упаковка образовавшейся в результате репликации одноцепочечной плазмиды в фаговые частицы M13. Одноцепочечная ДНК Bluescript M13+ после очистки может быть использована непосредственно для секвенирования клонированной ДНК или проведения сайт-специфического мутагенеза. Векторы типа Bluescript M13+, способные существовать либо в виде плазмиды, либо в составе фаговых частиц нитевидных бактериофагов, называют фагмидами.