
- •Часть 1 общие вопросы выполнения релейной защиты
- •1.1. Назначение, функции и свойства релейной защиты
- •1.2. Функциональные части релейной защиты
- •1.3. Виды повреждений
- •1.4. Повреждения в электроустановках
- •1.5. Ненормальные режимы
- •1.6. Особенности повреждений ээс
- •1.7. Многофазные короткие замыкания в одной точке
- •1.8. Короткие замыкания на землю
- •1.9. Соотношения токов
- •1.10. Однофазные замыкания на землю
- •1.11. Принципы выполнения релейной защиты
- •Часть 2 токовые защиты
- •2.1. Принцип действия
- •2.2. Максимальная токовая защита
- •Схемы защиты
- •2.3. Выбор уставок действия защиты Выбор тока срабатывания
- •Выдержка времени защиты
- •Выбор времени действия защит
- •2.3. Мтз с пуском (блокировкой)
- •2.4. Мтз с зависимой и с ограниченно зависимой характеристикой выдержки времени от тока Принцип действия защиты
- •2.5. Мтз на переменном оперативном токе
- •Схемы с питанием оперативных цепей защиты от блоков питания
- •2.6. Токовые отсечки Принцип действия
- •Схемы отсечек
- •Отсечки мгновенного действия на линиях с односторонним питанием. Ток срабатывания отсечки
- •Неселективные отсечки
- •Отсечки на линиях с двухсторонним питанием
- •Отсечки с выдержкой времени
- •2.7. Токовая трехступенчатая защита
- •2.8. Применение токовых отсечек
- •Часть 3 токовая направленная защита
- •3.1. Область применения токовых направленных защит
- •3.2. Необходимость применения направленной защиты в сетях с двухсторонним питанием
- •3.3. Схема токовой направленной зашиты
- •3.4. Реле направления мощности
- •Схемы включения реле направления мощности
- •3.5. Поведение реле мощности, включенных на ток неповрежденной фазы
- •3.6. Блокировка максимальной направленной защиты при замыканиях на землю
- •3.7. Выбор уставок защиты
- •3.8. Мертвая зона
- •3.9. Оценка токовых направленных защит
- •Часть 4 дистанционная защита
- •4.1. Назначение и принцип действия
- •4.2. Принцип обеспечения селективности
- •4.3. Элементы дистанционной защиты
- •4.4. Использование комплексной плоскости
- •4.5. Характеристики срабатывания реле
- •4.6. Выбор уставок срабатывания дистанционной защиты
- •4.7. Поведение дистанционных защит при качаниях
- •4.8. Блокировки при качаниях
- •4.9. Блокировки при неисправностях цепей напряжения
- •4.10. Краткие выводы
- •Часть 5 высокочастотные защиты
- •5.1. Общие положения выполнения абсолютно селективных и высокочастотных защит
- •5.2. Направленная защита с вч блокировкой
- •5.3. Дифференциально-фазная вч защита
- •Основные органы дфз и особенности их выполнения
- •5.4. Искажение фаз сравниваемых токов
- •5.5. Оценка вч защит
- •Часть 6
- •6.1. Принцип действия дифференциальной токовой продольной защиты
- •6.2. Токи небаланса в дифференциальной защите
- •6.3. Способы повышения чувствительности защиты
- •6.4. Особенности продольной дифференциальной токовой защиты трансформатора (автотрансформатора)
- •Особенности поперечной дифференциальной токовой направленной защиты
- •Алгоритм функционирования
- •Часть 7 защита от замыканий на землю
- •7.1. Защита от замыканий на землю в сети с большим током замыкания на землю
- •Максимальная токовая защита нулевой последовательности
- •Уставки защиты
- •Токовые направленные защиты нулевой последовательности
- •Отсечки нулевой последовательности
- •Токовые ненаправленные отсечки нулевой последовательности
- •Направленные отсечки нулевой последовательности
- •Ступенчатая защита нулевой последовательности
- •Оценка и область применения защиты
- •7.2. Защита от замыкания на землю в сети с малым током замыкания Токи и напряжения при однофазном замыкании на землю
- •Общая неселективная сигнализация
- •Библиографический список:
- •Содержание
Максимальная токовая защита нулевой последовательности
Защита (рис. 7.4) состоит из пускового реле 1 и реле времени 2. Реле 1 включается на фильтр тока нулевой последовательности, в качестве которого обычно используется нулевой провод ТТ, соединенных по схеме полной звезды. Реле времени 2 создает выдержку времени, необходимую по условию селективности.
Рис. 7.4. Схема токовой нулевой последовательности
Ток в реле 1 равен сумме вторичных токов трех фаз; пренебрегая погрешностью ТТ, получаем:
.
Ток в пусковом реле защиты появляется только в том случае, когда имеется ток I0. Поэтому защита нулевой последовательности, показанная на рис. 7.4, может работать только при однофазных и двухфазных КЗ на землю.
При междуфазных
КЗ (без «земли»), а также при нагрузке и
качаниях защита нулевой последовательности
не действует, поскольку в этих режимах
сумма токов
и ток I0
отсутствует.
Важным преимуществом защиты нулевой последовательности является то, что она не реагирует на нагрузку. Благодаря этому ее не требуется отстраивать от токов нормального режима и перегрузок, что позволяет обеспечить высокую чувствительность этой защиты по сравнению с защитами, реагирующими на фазные токи.
Однако в действительности работа защиты осложняется погрешностью ТТ, обусловленной их током намагничивания.
Поэтому в режимах,
когда имеет место баланс первичных
токов
,
сумма вторичных токов
.
В нулевом проводе и пусковом реле защиты появляется остаточный ток, называемый током небаланса (Iнб), который может вызвать нежелательное действие защиты при отсутствии тока I0.
Значение Iнб можно найти, если учесть токи намагничивания ТТ, тогда:
.
Второй член в выражении является током небаланса. Обозначив его Iнб и выразив первый член через I0, получим:
.
Последнее выражение показывает, что ток в пусковом реле защиты состоит из двух слагающих: одно обусловлено первичным током I0 и второе – погрешностью ТТ. Последнее искажает величину тока 3I0, на которую реагирует защита.
Ток небаланса равен сумме намагничивающих токов ТТ:
.
Сумма намагничивающих токов обычно не равна нулю. Это объясняется тем, что токи намагничивания имеют несинусоидальную форму и, кроме того, различаются по величине и фазе вследствие нелинейности и неидентичности характеристик намагничивания и неравенства в величине вторичных нагрузок ТТ различных фаз.
За расчетное значение для определения Iнбмax следует принимать ток трехфазного КЗ. Для ограничения тока небаланса необходимо работать в ненасыщенной части характеристики намагничивания и иметь одинаковые токи намагничивания во всех фазах. Чтобы обеспечить эти условия, ТТ, питающие защиту, должны:
удовлетворять условию 10%-ной погрешности при максимальном значении тока трехфазного КЗ в начале следующего участка;
иметь идентичные характеристики намагничивания на всех трех фазах;
иметь одинаковые нагрузки вторичных цепей во всех фазах.
В неустановившихся режимах под влиянием апериодического тока КЗ токи намагничивания, а вместе с ними и токи небаланса могут значительно возрасти, что необходимо учитывать при выборе параметров защит, работающих без выдержки времени.
Чтобы исключить действие защиты от токов небаланса, величину тока срабатывания пусковых реле защиты выбирают больше тока небаланса.