
- •Кафедра нормальной физиологии кафедра химии физиология дыхания
- •Предисловие
- •1. Внешнее дыхание
- •Структурно-функциональная характеристика внешнего звена системы дыхания
- •Строение воздухоносных путей дыхательной системы
- •Контрольные вопросы
- •Биомеханика вдоха и выдоха
- •Контрольные вопросы
- •Сопротивление дыханию
- •Контрольные вопросы
- •Плевральное давление и его изменение во время дыхания
- •Контрольные вопросы
- •Вентиляция легких: легочные объемы и емкости. Методы исследования
- •Контрольные вопросы
- •1.6. Тестовые задания и ситуационная задача
- •Газообмен в легких
- •2.1. Роль парциального давления газов в газообмене
- •Процентный состав газовых смесей
- •Парциальное давление газов в альвеолярной газовой смеси и их напряжение в крови (в мм.Рт.Ст)
- •Контрольные вопросы
- •2.2. Гемодинамика легких (перфузия легких)
- •Контрольные вопросы
- •2.3. Газообмен через аэрогематический барьер
- •Контрольные вопросы
- •2.4. Тестовые задания и ситуационная задача
- •3. Транспорт газов кровью
- •3.1. Транспорт кислорода кровью
- •Влево вправо
- •Контрольные вопросы
- •3.2. Транспорт углекислого газа кровью
- •Контрольные вопросы
- •3.3. Тестовые задания и ситуационная задача
- •4. Газообмен в тканях
- •Контрольные вопросы
- •4.1. Тестовые задания
- •5. Тканевое дыхание
- •5.1. История изучения процессов тканевого дыхания
- •Контрольные вопросы
- •5.2. Современные представления о структуре элементов дыхательной цепи
- •5.2.1. Характеристика коферментов на основе витамина в5 (рр)
- •Контрольные вопросы
- •5.2.2. Характеристика коферментов на основе витамина в2
- •Контрольные вопросы
- •5.2.3.Строение и характеристика убихинона (кофермент q)
- •Контрольные вопросы
- •5.2.4.Строение и характеристика цитохромов и железосерных белков
- •Контрольные вопросы
- •5.3.Биологическое окисление
- •Окислительно-восстановительные потенциалы некоторых систем дыхательной цепи (в изолированном состоянии, рН 7,0)
- •Контрольные вопросы
- •5.4.Строение митохондрий
- •Локализация некоторых ферментов в митохондриях (ферменты-маркеры)
- •Контрольные вопросы
- •5.5.Принципы функционирования дыхательной цепи
- •Контрольные вопросы
- •5.6. Дыхательный контроль
- •Контрольные вопросы
- •5.7. Ингибиторы тканевого дыхания
- •Контрольные вопросы
- •5.8. Тестовые задания и ситуационная задача
- •6. Регуляция дыхания
- •Контрольные вопросы
- •Контрольные вопросы
- •6.2. Другие области локализации дыхательных нейронов
- •Контрольные вопросы
- •6.3. Генерация дыхательного ритма
- •Контрольные вопросы
- •6.4. Роль хеморецепторов в регуляции дыхания
- •Контрольные вопросы
- •6.5. Роль механорецепторов в регуляции дыхания
- •Контрольные вопросы
- •6.6. Координация дыхания с другими функциями организма
- •Контрольные вопросы
- •6.7. Тестовые задания и ситуационная задача
- •7. Дыхание в необычных условиях
- •7.1. Дыхание при подъеме на высоту
- •Парциальное давление кислорода в воздухе на разной высоте от уровня моря
- •Контрольные вопросы
- •7.2. Дыхание при погружении на глубину
- •Контрольные вопросы
- •7.3 Тестовые задания и ситуационная задача
- •8. Эталоны ответов к тестовым заданиям и ситуационным задачам
- •Эталоны ответов к ситуационным задачам:
- •Тест фжел (форсированная жизненная ёмкость легких)
Контрольные вопросы
Какие транспортные формы углекислого газа существуют ?
Какая форма транспорта углекислого газа основная ?
Почему кривая диссоциации двуокиси углерода в виде прямой линии ?
3.3. Тестовые задания и ситуационная задача
Выберите один правильный ответ.
УГЛЕКИСЛЫЙ ГАЗ В КРОВИ ТРАНСПОРТИРУЕТСЯ В ВИДЕ
1) растворенного газа, связанного с гемоглобином, в составе бикарбонатов
2) только в растворенном виде
3) только в составе бикарбонатов
ДИСССОЦИАЦИЯ ОКСИГЕМОГЛОБИНА УВЕЛИЧИВАЕТСЯ ПРИ УСЛОВИИ
1) увеличения pH крови, уменьшения содержания CO2 в крови
2) уменьшения температуры тела, увеличения содержания карбоксигемоглобина
3) увеличения pH крови, повышения температуры тела, увеличения содержания CO2 в крови
4) увеличения pH крови и повышения температуры тела
КИСЛОРОДНАЯ ЕМКОСТЬ КРОВИ – ЭТО
1) максимальное количество кислорода, которое может связать кровь при полном насыщении гемоглобина кислородом
2) диффузия кислорода и альвеолярного воздуха в кровь
3) часть кислорода, поглощаемого тканями из венозной крови
4) часть кислорода, поглощаемого тканями из артериальной крови
КОЭФФИЦИЕНТОМ УТИЛИЗАЦИИ КИСЛОРОДА НАЗЫВАЮТ
1) максимальное количество кислорода, которое может связать кровь при полном насыщении гемоглобина кислородом
2) большую часть кислорода, содержащуюся в артериальной крови
3) часть кислорода, поглощённую тканями из венозной крови
4) часть кислорода, поглощённую тканями из артериальной крови
Ситуационная задача 3
У больного резко нарушен транспорт гемоглобина. Какое терапевтическое воздействие может помочь в обеспечении тканей кислородом ?
4. Газообмен в тканях
Обмен СО2 между клетками тканей с кровью тканевых капилляров определяется следующими механизмами. В процессах окисления в тканях образуется СО2. Обычно в большинстве тканей рСО2 близок в 50-60 мм рт. ст. В крови, поступающей в артериальный конец капилляров раСО2= 40 мм рт.ст. Наличие градиента заставляет СО2 диффундировать из тканевой жидкости к капиллярам. Интенсивность окисления в различных тканях не одинакова. Поэтому в смешанной венозной крови, поступающей в правое предсердие в покое, рvcо2 равно 46 мм рт.ст. Кровь, проходящая через легкие отдает не весь СО2. Большая часть его сохраняется в артериальной крови.
В ходе газообмена СО2 между тканями и кровью содержание НСО3- в эритроците повышается и они начинают диффундировать в кровь (рис. 18). Для поддержания электронейтральности в эритроциты начнут поступать из плазмы дополнительно ионы С1-. Наибольшее количество бикарбонатов плазмы крови образуется при участии карбоангидразы эритроцитов. В условиях in vitro образование молекулярного СО2 из гидрокарбонатов происходит чрезвычайно медленно и диффузия этого газа занимает около 5 мин, тогда как в капиллярах легкого равновесие наступает через 1 с. Это определяется функцией фермента карбоангидразы угольной кислоты. В функции карбоангидразы выделяют следующие типы реакций:
СО2+Н2О =H2СО-3 = H++НСО3-
Рис. 18. Газообмен в тканях
Карбаминовый комплекс СО2 с гемоглобином образуется в результате реакции СО2 с радикалом NH2 глобина. Эта реакция протекает без участия какого-либо фермента, т. е. она не нуждается в катализе. Реакция СО2 с Нb приводит, во-первых, к высвобождению Н+; во-вторых, в ходе образования карбаминовых комплексов снижается сродство Нb к О2.