- •Кафедра нормальной физиологии кафедра химии физиология дыхания
- •Предисловие
- •1. Внешнее дыхание
- •Структурно-функциональная характеристика внешнего звена системы дыхания
- •Строение воздухоносных путей дыхательной системы
- •Контрольные вопросы
- •Биомеханика вдоха и выдоха
- •Контрольные вопросы
- •Сопротивление дыханию
- •Контрольные вопросы
- •Плевральное давление и его изменение во время дыхания
- •Контрольные вопросы
- •Вентиляция легких: легочные объемы и емкости. Методы исследования
- •Контрольные вопросы
- •1.6. Тестовые задания и ситуационная задача
- •Газообмен в легких
- •2.1. Роль парциального давления газов в газообмене
- •Процентный состав газовых смесей
- •Парциальное давление газов в альвеолярной газовой смеси и их напряжение в крови (в мм.Рт.Ст)
- •Контрольные вопросы
- •2.2. Гемодинамика легких (перфузия легких)
- •Контрольные вопросы
- •2.3. Газообмен через аэрогематический барьер
- •Контрольные вопросы
- •2.4. Тестовые задания и ситуационная задача
- •3. Транспорт газов кровью
- •3.1. Транспорт кислорода кровью
- •Влево вправо
- •Контрольные вопросы
- •3.2. Транспорт углекислого газа кровью
- •Контрольные вопросы
- •3.3. Тестовые задания и ситуационная задача
- •4. Газообмен в тканях
- •Контрольные вопросы
- •4.1. Тестовые задания
- •5. Тканевое дыхание
- •5.1. История изучения процессов тканевого дыхания
- •Контрольные вопросы
- •5.2. Современные представления о структуре элементов дыхательной цепи
- •5.2.1. Характеристика коферментов на основе витамина в5 (рр)
- •Контрольные вопросы
- •5.2.2. Характеристика коферментов на основе витамина в2
- •Контрольные вопросы
- •5.2.3.Строение и характеристика убихинона (кофермент q)
- •Контрольные вопросы
- •5.2.4.Строение и характеристика цитохромов и железосерных белков
- •Контрольные вопросы
- •5.3.Биологическое окисление
- •Окислительно-восстановительные потенциалы некоторых систем дыхательной цепи (в изолированном состоянии, рН 7,0)
- •Контрольные вопросы
- •5.4.Строение митохондрий
- •Локализация некоторых ферментов в митохондриях (ферменты-маркеры)
- •Контрольные вопросы
- •5.5.Принципы функционирования дыхательной цепи
- •Контрольные вопросы
- •5.6. Дыхательный контроль
- •Контрольные вопросы
- •5.7. Ингибиторы тканевого дыхания
- •Контрольные вопросы
- •5.8. Тестовые задания и ситуационная задача
- •6. Регуляция дыхания
- •Контрольные вопросы
- •Контрольные вопросы
- •6.2. Другие области локализации дыхательных нейронов
- •Контрольные вопросы
- •6.3. Генерация дыхательного ритма
- •Контрольные вопросы
- •6.4. Роль хеморецепторов в регуляции дыхания
- •Контрольные вопросы
- •6.5. Роль механорецепторов в регуляции дыхания
- •Контрольные вопросы
- •6.6. Координация дыхания с другими функциями организма
- •Контрольные вопросы
- •6.7. Тестовые задания и ситуационная задача
- •7. Дыхание в необычных условиях
- •7.1. Дыхание при подъеме на высоту
- •Парциальное давление кислорода в воздухе на разной высоте от уровня моря
- •Контрольные вопросы
- •7.2. Дыхание при погружении на глубину
- •Контрольные вопросы
- •7.3 Тестовые задания и ситуационная задача
- •8. Эталоны ответов к тестовым заданиям и ситуационным задачам
- •Эталоны ответов к ситуационным задачам:
- •Тест фжел (форсированная жизненная ёмкость легких)
Влево вправо
Рис. 16. Сдвиги кривой диссоциации оксигемоглобина
Сродство гемоглобина к кислороду регулируется важнейшими факторами метаболизма тканей: Ро2 pH, температурой и внутриклеточной концентрацией 2,3-дифосфоглицерата.
1) Величина рН и содержание СО2 в любой части организма закономерно изменяют сродство гемоглобина к О2: уменьшение рН крови вызывает сдвиг кривой диссоциации соответственно вправо (уменьшается сродство гемоглобина к О2), а увеличение рН крови — сдвиг кривой диссоциации влево (повышается сродство гемоглобина к О2). Влияние рН на кривую диссоциации оксигемоглобина называется «эффектом Бора». Эффект Бора может быть связан также с изменением Рсо2: его повышение сдвигает кривую связывания О2 вправо, понижение - влево. Это влияние основывается, в первую очередь, на том, что повышение Рсо2 ведет к снижению рH и наоборот. Влияние самих молекул СО2 на афинность гемоглобина к О2, напротив, незначительно.
2) Влияние температуры: рост температуры уменьшает сродство гемоглобина к О2. В работающих мышцах увеличение температуры способствует освобождению О2. Уменьшение температуры тканей вызывает сдвиг влево кривой диссоциации оксигемоглобина. Значение влияния температуры для гомойотермных организмов небольшое, хотя температура крови на периферии тела может сильно отличаться от температуры всего организма.
3) Эффект 2,3-дифосфоглицерата: в его отсутствии афинность гемоглобина к кислороду очень высока. Главная функция 2,3-дифосфоглицерата состоит в смещении кривой связывания О2 вправо, в область, которая соответствует физиологическим условиям.
Контрольные вопросы
Какие транспортные формы кислорода существуют ?
Что такое кислородная емкость крови, как она определяется ?
Что такое коэффициент утилизации кислорода, как он определяется ?
Почему кривая диссоциации оксигемоглобина (сатурационная кривая) имеет S- образную форму ?
Какое биологическое значение крутой и отлогой частей кривой диссоциации оксигемоглобина (сатурационной кривой) ?
Какие факторы влияют на афинность (сродство) гемоглобина к О2 ?
3.2. Транспорт углекислого газа кровью
В венозной крови содержится около 580 мл/л СО2. Транспорт обеспечивается в таких формах, как: 1) растворенный СО2 в плазме крови (5—10%); 2) в виде гидрокарбонатов (80—90%); 3) карбаминовые соединения эритроцитов (5—15%).
Небольшая часть СО2 транспортируется в легкие в растворенном виде (0,3 мл/100 мл крови). Растворенный в крови СО2 реагирует с водой:
CO2 + Н2О = H2CO3
В плазме крови эта реакция протекает медленно и не имеет особого значения. Но в эритроцитах имеется цинк-содержащий фермент - карбоангидраза - который смещает равновесие реакции вправо (в сторону образования угольной кислоты). Образование H2CO3 происходит в 1000 раз быстрее, чем в плазме, кроме того, около 99,9% H2CO3 диссоциирует с образованием HCO3-- и иона водорода (H+):
CO2 + Н2О =H2CO3 = HCO-3 + H+
Образующиеся протоны (H+) нейтрализуются гемоглобиновым буфером (H+ + Hb = HHb). Образующийся HCO3- выходит из эритроцитов в плазму, для
поддержания электронейтральности в эритроциты поступают ионы Cl -.
В эритроците CO2 может также связываться гемоглобином с образованием HbCO2. Как и в первом случае, образующийся при этом H+ связывается гемоглобиновым буфером.
Как сатурация гемоглобина кислородом коррелирует с PО2, так и общее
содержание CO2 в крови коррелирует с PCO2 и описывается кривой диссоциации CO2 (рис. 17).
Рис. 17. Кривая диссоциации двуокиси углерода
Даже при выраженных нарушениях Va/Q (то есть при выраженной легочной патологии) Paco2, как правило, остается в пределах нормальных значений. Это является следствием того, что кривая диссоциации CO2 (рис. 17) нарастает монотонно. Артериовенозная разница по Pco2 в покое обычно составляет 5 мм рт. ст.и редко превышает 10 мм рт. ст. При данном значении Pco2 деоксигенированная кровь содержит большее количество CO2, чем оксигенированная (эффект Холдена). В отличие от кривой насыщения Hb кислородом кривая содержания CO2 не имеет плато и в клинически значимом диапазоне представляет собой прямую линию.
В венозной крови, притекающей к капиллярам легких, напряжение СО2 составляет в среднем 46 мм рт.ст., а в альвеолярном воздухе парциальное давление СО2 равно в среднем 40 мм рт.ст., что обеспечивает диффузию СО2 из плазмы крови в альвеолы легких по концентрационному градиенту.
Эндотелий капилляров проницаем только для молекулярного СО2 как полярной молекулы. Из крови в альвеолы диффундирует физически растворенный в плазме крови молекулярный СО2. Кроме того, в альвеолы легких диффундирует СО2, который высвобождается из карбаминовых соединений эритроцитов благодаря реакции окисления гемоглобина в капиллярах легкого, а также из гидрокарбонатов плазмы крови в результате их быстрой диссоциации с помощью фермента карбоангидразы, содержащейся в эритроцитах. Молекулярный СО2 проходит аэрогематический барьер, а затем поступает в альвеолы. В норме через 1 с происходит выравнивание концентраций СО2 на альвеолярно-капиллярной мембране, поэтому за половину времени капиллярного кровотока происходит полный обмен СО2 через аэрогематический барьер. Реально равновесие наступает несколько медленнее. Это связано с тем, что перенос СО2, так же как и О2, ограничивается скоростью перфузии капилляров легких.
