
- •Общие принципы получения информации в физических исследованиях. Основные цели обработки сигналов. Преимущества цифровых методов обработки сигналов. Примеры практического применения.
- •Содержание, этапы, методы и задачи цифровой обработки сигналов. Основные методы и алгоритмы цос.
- •Основные направления, задачи и алгоритмы цифровой обработки сигналов
- •Дискретные и цифровые сигналы. Основные дискретные последовательности теории цос.
- •Линейные дискретные системы с постоянными параметрами. Импульсная характеристика. Физическая реализуемость и устойчивость.
- •Линейные разностные уравнения с постоянными параметрами, их практическое значение и решение.
- •Соотношение между z-преобразованием и преобразованием Фурье
- •Обратное z-преобразование и методы его нахождения: на основе теоремы о вычетах, разложение на простые дроби и в степенной ряд.
- •Передаточная функция дискретных систем. Диаграммы нулей и полюсов. Условие устойчивости.
- •Частотная характеристика дискретных систем. Амплитудно-частотная и фазочастотная характеристики.
- •Фазовая и групповая задержка. Цифровая частота и единицы измерения частоты, которые используются в цифровой обработке сигналов.
- •Общая характеристика дискретного преобразования Фурье. Задачи, решаемые с помощью дпф. Дискретный ряд Фурье.
- •Дискретный ряд Фурье
- •Свойства дискретных рядов Фурье. Периодическая свертка двух последовательностей.
- •Дискретное преобразование Фурье. Основные свойства.
- •Общая характеристика ряда и интеграла Фурье, дискретного ряда Фурье и дискретного преобразования Фурье. Равенство Парсеваля.
- •Прямой метод вычисления дпф. Основные подходы к улучшению эффективности вычисления дпф.
- •Алгоритмы бпф с прореживанием по времени. Основные свойства.
- •Двоичная инверсия входной последовательности для
- •Алгоритмы бпф с прореживанием по частоте. Вычисление обратного дпф.
- •Вычисление периодической, круговой и линейной свертки. Алгоритм быстрой свертки. Вычислительная эффективность.
- •Вычисление линейной свертки с секционированием.
- •Амплитудный спектр, спектр мощности. Определение и алгоритмы получения.
- •Оценка спектра мощности на основе периодограммы. Свойства периодограммы. Методы получения состоятельных периодограммных оценок.
- •Основные проблемы цифрового спектрального анализа. Взвешивание. Свойства весовых функций. Модифицированные периодограммные оценки спм.
- •1.6.1. Просачивание спектральных составляющих и размывание спектра
- •Взвешивание. Свойства весовых функций
- •Паразитная амплитудная модуляция спектра
- •Эффекты конечной разрядности чисел в алгоритмах бпф
- •Метод модифицированных периодограмм
- •Метод Блэкмана и Тьюки получения оценки спектральной плотности мощности. Сравнительная оценка качества методов получения спм.
- •Сравнение методов оценки спектральной плотности мощности
- •Основные характеристики цифровых фильтров. Рекурсивные и нерекурсивные цифровые фильтры, их преимущества и недостатки.
- •2.1 Общая характеристика цифровых фильтров
- •2.2 Проектирование цифровых фильтров
- •2.2.1 Тербования к разрабатываемым фильтрам
- •Структурные схемы бих-фильтров (прямая и каноническая, последовательная и параллельная формы реализации).
- •Структурные схемы ких-фильтров (прямая, каскадная, с частотной выборкой, схемы фильтров с линейной фазой, на основе метода быстрой свертки).
- •Проектирование цифровых фильтров. Основные этапы и их краткая характеристика.
- •Методы расчета цифровых рекурсивных фильтров: инвариантное преобразование импульсной характеристики, билинейное z-преобразование
- •Общая характеристика аналоговых фильтров-прототипов: Баттерворта, Чебышева I и II типа, Золоторева-Каура (эллиптические). Методика применения билинейного z-преобразования.
- •Эффекты конечной разрядности чисел в бих-фильтрах. Ошибки квантования коэффициентов, ошибки переполнения и округления. Предельные циклы.
- •Расчет цифровых ких-фильтров: методы взвешивания и частотной выборки.
- •Эффекты конечной разрядности чисел в ких-фильтрах.
- •Общая структурная схема системы цос. Дискретизация сигналов. Теорема отсчетов.
- •Эффект наложения спектров
- •Дискретизация узкополосных сигналов
- •Выбор частоты дискретизации на практике
- •Квантование сигналов. Погрешность квантования. Отношение сигнал/шум и динамический диапазон при квантовании сигналов. Равномерное и неравномерное квантование
- •Анализ ошибок
- •Отношение сигнал/шум и динамический диапазон
- •Способы реализации алгоритмов и систем цос. Понятие реального времени обработки.
- •Особенности цос, влияющие на элементную базу, ориентированной на реализацию цифровых систем обработки сигналов.
- •Общие свойства процессоров цифровой обработки сигналов и особенности их архитектуры.
- •Архитектура Фон Неймана и гарвардская архитектура в пцос. Преимущества и недостатки.
- •Универсальные процессоры цос. Общая характеристика процессоров с фиксированной и плавающей точкой (запятой).
Общая характеристика аналоговых фильтров-прототипов: Баттерворта, Чебышева I и II типа, Золоторева-Каура (эллиптические). Методика применения билинейного z-преобразования.
Общая характеристика аналоговых фильтров-прототипов
Фильтры Баттерворта, Чебышева, инверсные Чебышева и эллиптические образуют четыре наиболее известных класса. Фильтр Баттерворта обладает монотонной характеристикой (Характеристика является монотонно спадающей, если она никогда не возрастает с увеличением частоты.) Характеристика фильтра Чебышева содержит пульсации (колебания передачи) в полосе пропускания и монотонна в полосе задерживания. Инверсная характеристика фильтра Чебышева монотонна в полосе пропускания и обладает пульсациями в полосе задерживания.
1.1. Фильтры Баттерворта
Вероятно, наиболее простая амплитудно-частотная характеристика фильтра нижних частот у фильтра Баттерворта, которая в случае n-го порядка определяется следующим образом:
|
|
(1) |
Эта характеристика фильтра Баттерворта монотонно спадает (никогда не возрастает) при увеличении частоты. Увеличение порядка также приводит к улучшению характеристики.
Для фильтра Баттерворта минимальный порядок можно определить, подставив приведенные выше условия в (1) и решив его относительно порядка n. В результате получаем
|
|
(6) |
Амплитудно-частотная характеристика фильтра Баттерворта наиболее плоская около частоты =0 по сравнению с характеристикой любого полиномиального фильтра n-го порядка и вследствие этого называется максимально плоской. Следовательно, для диапазона низких частот характеристика фильтра Баттерворта наилучшим образом аппроксимирует идеальную характеристику. Однако для частот, расположенных около точки среза и в полосе задерживания, характеристика фильтра Баттерворта заметно уступает характеристике Чебышева, который рассматривается ниже.
Однако фазочастотная характеристика фильтра Баттерворта лучше (более близка к линейной), чем соответствующие фазочастотные характеристики фильтров Чебышева, инверсных Чебышева и эллиптических сравнимого порядка. Это согласуется с общим правилом для фильтров данного типа – чем лучше амплитудно-частотная характеристика, тем хуже фазочастотная, и наоборот.
1.2. Фильтры Чебышева
Фильтр Чебышева обладает амплитудно-частотной характеристикой, которая определяется следующим образом:
|
|
(8) |
Параметры и К – постоянные числа, а Сn является полиномом Чебышева первого рода степени n и имеет вид:
|
Cn(x)=cos(narcos(x)). |
(9) |
|
|
|
Амплитудно-частотная характеристика достигает своего наибольшего значения К в тех точках, где Сn равно нулю. Поскольку эти точки распределены по полосе пропускания, то характеристика фильтра Чебышева содержит пульсации в полосе пропускания и монотонна в других областях. Размах этих пульсаций определяет параметр , а их число степень n. Коэффициент усиления фильтра определяется значением К.
Минимально допустимое затухание в полосе пропускания – постоянный размах пульсаций, часто выражается в децибелах как
|
|
(11) |
и может использоваться как характеристика фильтра Чебышева.
На основе (8) для К=1 найдем минимальный порядок фильтра Чебышева:
|
|
(14) |
Амплитудно-частотная характеристика фильтра Чебышева данного порядка лучше амплитудно-частотной характеристики Баттерворта, так как у фильтра Чебышева уже ширина переходной области. Однако фазочастотная характеристика фильтра Чебышева хуже (более нелинейна) по сравнению с фазочастотной характеристикой фильтра Баттерворта. Фазочастотные характеристики фильтра Чебышева для 2–7-го порядков приведены на рис. 5. Для сравнения на рис. 5 штриховой линией изображена фазочастотная характеристика фильтра Баттерворта шестого порядка. Можно также отметить, что фазочастотные характеристики фильтров Чебышева высокого порядка хуже фазочастотных характеристик фильтров более низкого порядка. Это согласуется с тем фактом, что амплитудно-частотная характеристика фильтра Чебышева высокого порядка лучше амплитудно-частотной характеристики фильтра более низкого порядка.
Рис. 5. Фазочастотные характеристики фильтров Баттерворта и Чебышева.
1.3. Эллиптические фильтры
Эллиптический фильтр имеет амплитудно-частотную характеристику, которая содержит пульсации как в полосе пропускания, так и в полосе задерживания и является лучшим среди всех фильтров нижних частот в том смысле, что для заданного порядка и допустимых отклонений характеристик в полосах пропускания и задерживания обладает самой узкой шириной переходной области. Пример амплитудно-частотной характеристики эллиптического фильтра пятого порядка изображен на рис. 6.
Рис. 6. Амплитудно-частотная характеристика эллиптического фильтра нижних частот для случая n=5.
Пульсации в полосе пропускания равны по значению и могут характеризоваться максимальным допустимым затуханием в полосе задерживания. Эта величина которую мы также будем называть неравномерностью передачи, в полосе пропускания (РRW), дБ, согласно обозначению на рис. 6 равна:
|
PRW=–20log10(A1). |
(15) |
Пульсации в полосе пропускания так же равны по значению (хотя не обязательно равны размаху пульсаций в полосе пропускания) и характеризуются минимальным затуханием в полосе задерживания МSL, дБ, следующим образом:
|
MSL=–20log10 (A2). |
(16) |