
- •Раздел I. Теоретические основы технологии
- •1. Понятия и определения в машиностроении
- •1. 1. Основные определения в машиностроении
- •1.2. Характеристика типов производств
- •2. Базирование в машиностроении
- •2.1 Основные понятия и определения
- •2.2 Основные сведения о базировании
- •2.3 Классификация баз в машиностроении
- •2.4. Выбор баз и принципы базирования
- •3.1 Погрешность базирования
- •3.2. Перерасчет размеров и допусков при смене баз
- •4. Точность в машиностроении
- •4.1. Понятие точности в машиностроении
- •4.2 Погрешность от упругих деформаций технологической
- •4.3 Методы определения жесткости
- •5.1. Погрешность установки заготовок в приспособлении
- •5.2. Погрешность настройки технологической системы
- •5.2.3. Автоматическое получение размеров на настроенных
- •6.1 Погрешности, возникающие от размерного износа
- •6.2 Погрешности от температурных деформаций
- •6.2.1 Тепловые деформации станка
- •6.2.2 Тепловые деформации обрабатываемых заготовок
- •6.2.3 Температурные деформации режущего инструмента
- •7. Статистические методы исследования
- •7.1 Виды погрешностей и их характеристика
- •7.2 Законы распределения погрешностей
- •7.3 Оценка точности обработки методом
- •8. Формирование качества деталей машин
- •8.1 Показатели качества поверхностей деталей машин
- •8.2 Влияние способов и условий обработки
- •9.1 Влияние шероховатости и состояния поверхности
- •9.1.1 Влияние шероховатости поверхности на
- •9.1.2 Влияние деформационного упрочнения на износостойкость
- •9.1.3 Влияние остаточных напряжений на эксплуатационные
- •10.1. Технологическая наследственность
- •10.2 Технологические методы повышения качества
- •10.2.1 Дробеструйная обработка
- •10.2.2 Наклепывание бойками
- •10.2.3 Обкатывание поверхности детали шариками или роликами
- •10.2.4 Раскатывание отверстий
- •10.2.5 Обработка стальными щетками
- •10.2.6 Наклепывание поверхности ударами шариков
- •10.2.7 Алмазное выглаживание
- •11. Припуски на механическую обработку
- •11.1. Виды припусков
- •11.1.1. Методы определения припусков
- •12 Производительность и себестоимость
- •12.1 Производительность и себестоимость обработки
- •12.2 Методы расчета экономичности вариантов
- •12.2.1 Бухгалтерский метод
- •1.2.2 Элементный метод
- •12.2.3 Расчет экономичности обработки с различными точностью и
- •12.2.4 Оценка экономической эффективности варианта
- •13 Проектирование технологических
- •13.1 Исходные данные для проектирования технологического
- •13.2 Классификация технологических процессов
- •13.3 Концентрация и дифференциация операций
- •13.4. Анализ исходной информации при разработке технологического процесса изготовления детали
- •13.5 Последовательность разработки технологического процесса
- •14.1 Выбор типа заготовки
- •14.2 Специальные способы литья
- •14.2.1. Литье в оболочковые формы
- •14.2.2. Литье по выплавляемым моделям и сущность метода
- •14.2.4. Литье в металлические формы (кокили)
- •14.2.5. Центробежное литье
- •15.1 Выбор технологических баз
- •15.2. Установление маршрута механической обработки
- •15.3 Разделение технологического процесса на этапы
- •15.4 Формирование плана операций
- •15.5 Проектирование черновых и чистовых переходов
- •16.1 Расчет режимов резания при обработке детали
- •16.2 Нормирование технологического процесса
- •16.2.1 Задачи и методы нормирования
- •16.2.2 Классификация затрат рабочего времени
- •16.2.3 Структура нормы времени
- •16.2.4 Особенности нормирования многоинструментальной
- •16.3 Документирование технологических процессов
- •Виды и комплектность технологических документов при разработке техпроцесса сборки (гост 3. 111983 и гост 3. 112184)
- •Виды и комплектность технологических документов при разработке техпроцесса изготовления детали (гост 3. 111983 и гост3. 112184)
- •Оптимизация технологических процессов
- •17.2 Технологичность конструкции детали
- •17.3. Критерии оптимальности, система ограничений
- •Выбор технических ограничений
- •17.4. Методы оптимизации
- •18. Сборка машин
- •18.1 Общие понятия о сборке машин
- •Разработку технологических процессов необходимо выполнять в соответствии со стандартами естд и естпп.
- •18.2 Организационные формы сборки
- •Время на выполнение сборки при непрерывно движущемся конвейере
- •18.3. Методы расчета размерных цепей
- •18.3.1 Метод полной взаимозаменяемости
- •1. Расчет размерных цепей способом “максимума – минимума”
- •2. Расчет размерных цепей способом равных допусков
- •3. Расчет размерных цепей способом равной точности
- •18.3.2. Расчет размерных цепей методом неполной
- •1. Способ групповой взаимозаменяемости (селективная сборка)
- •2. Способ пригонки
- •3. Способ регулирования
- •19.1 Этапы технологической подготовки процесса сборки
- •19.2 Схемы сборки
- •19.2.1 Технологическая схема сборки
- •19.2.2 Установление последовательности и содержания сборочных операций
- •19.3 Нормирование сборочных работ
- •20.1 Достижение требуемой точности сборки
- •20.1.1 Понятие о точности сборки
- •20.2 Монтаж валов на опорах скольжения и качения
- •20.3 Особенности сборки составных валов и муфт
- •Для окончательной посадки муфты иногда применяют «мягкие» молот-ки. При посадке h/k по центрирующему диаметру шлицев муфту перед сборкой целесообразно прогреть в горячем масле.
- •Рис, 20.9. Соединение составных коленчатых валов
- •21. Технология производства корпусных
- •21.1 Виды корпусов и их служебное назначение
- •21.2 Технические требования и заготовки для
- •21.3 Технология обработки корпусных деталей
- •21.3.1 Базирование корпусных деталей
- •21.3.2 Технология обработки корпусных деталей
- •21.4 Контроль корпусных деталей
- •21.5 Особенности обработки корпусов на станках с чпу
- •22 Технология изготовления рычагов, вилок
- •22.1 Конструктивные разновидности деталей
- •22.2 Технические условия и заготовки для изготовления
- •22.3 Технология обработки рычагов и вилок
- •22.4 Технология изготовления шатунов
- •22.4. 1. Служебное назначение и технические условия на
- •22.4.2 Материалы и заготовки для шатунов
- •22.4.3 Технологический процесс изготовления шатунов
- •22.4.4 Контроль шатунов
- •Лекция № 23
- •23 Технология изготовления валов и фланцев
- •23.1 Конструктивные разновидности валов
- •23.2 Технические требования и заготовки для валов
- •23.3 Технология обработки валов
- •23.4 Технология изготовления шпинделей
- •23.4.1 Служебное назначение шпинделей и технические
- •23.4.2 Материал и способы получения заготовок
- •23.4.3 Технологический процесс обработки шпинделей
- •23.5 Изготовление ходовых винтов
- •23.5.1 Служебное назначение ходовых винтов
- •23.5.2 Материалы для ходовых винтов
- •23.5.3 Технологический процесс изготовления ходовых винтов
- •23.2. Технологический маршрут обработки ходового винта токарного станка 16к20
- •24. Технология производства зубчатых колес
- •24.1 Конструктивные разновидности зубчатых колес
- •24.2 Требования к зубчатым колесам, материалы
- •24.3 Основные этапы обработки зубчатых колес
- •24.4 Методы нарезания зубьев
- •24.5 Отделка зубчатых колес
- •24.6 Изготовление червячных передач
- •24.6.1 Служебное назначение и технические требования
- •24.6.2 Материал и заготовки для червяков и колес
- •24.6. 3 Технология изготовления червяков и червячных колес
- •24.6 Методы нарезания червяков и червячных колес
- •24.7 Автоматизация технологических процессов изготовления
- •25 Технологические процессы электрофизических и электрохимических методов обработки
- •25.1 Классификация современных методов обработки
- •25.2 Электрохимическая обработка
- •25.3 Электроэрозионная обработка
- •25.4 Ультразвуковая обработка деталей
- •25.5 Лучевые методы обработки
6.2 Погрешности от температурных деформаций
технологической системы
При механической обработке деталей происходит нагрев технологической системы. Источником нагрева являются тепло, в зоне резания и узлах станка из-за потерь на трение , а также тепло от внешних источников.
Тепловое состояние системы может быть стационарным и не стацио-нарным. При стационарном режиме устанавливается тепловое равновесие системы – подвод тепла количественно равен его потерям и температура отдельных звеньев технологической системы стабилизируется. Условиям стационарного теплового режима соответствует процесс обработки небольших заготовок на предварительно прогретых станках.
К не стационарному тепловому режиму относится состояние технологической системы, когда температура нагрева обрабатываемой заготовки постоянно изменяется (увеличивается). Влияние тепловых деформаций на точность обработки следует рассматривать по двум периодам работы станка от пуска станка до получения теплового равновесия и период стационарного теплового состояния.
6.2.1 Тепловые деформации станка
Основными причинами нагрева станков и их отдельных элементов (передней и задней бабки, стола, станины и т. д.) являются потери на трение в подвижных механизмах станков (подшипниках, зубчатых передачах), гидроприводах и электроустройствах, во встроенных электромоторах и других источников выделения тепла.
Существенное влияние на точность обработки оказывает нагревание шпиндельных бабок. Температура нагрева шпиндельных бабок в различных точках колеблется от 10 до 500. Наибольшая температура нагрева наблюдается в местах расположения подшипников шпинделя и подшипников быстроходных валов, температура нагрева которых составляет обычно на 30-400 выше температуры нагрева корпусных деталей. При нагреве шпиндельные бабки смещаются в вертикальном и горизонтальном направлениях, что приводит к появлению погрешностей обработки. При большой длине шпинделя следует считаться с нагревом, в частности с температурной деформацией в осевом направлении, что существенно влияет на точность обработки. Если фиксация шпинделя производится у заднего подшипника, то при длине L и разности температур Δt перемещение патрона в осевом направлении составит
,
(6.7)
где α – относительный температурный коэффициент линейного расширения материала шпинделя.
6.2.2 Тепловые деформации обрабатываемых заготовок
В процессе обработки металлов в зоне резания происходит нагрев. Выделяющееся тепло распределяется следующим образом: часть тепла уходит в стружку, переходит в обрабатываемую деталь и в режущий инструмент. Однако, в количественном выражении распределение тепла, образующегося в зоне резания, зависит от вида обработки. Так, при токарной обработке 50-55 % тепла уходит в стружку и удаляется с ней из зоны резания (при высоких скоростях резания уход тепла со стружкой может составлять 90 %), 10-40 %, тепла переходит в резец, От 3 до 9 % тепла остается в заготовке и около 1 % тепла рассеивается в окружающую среду. При сверлении: 28 % тепла уходит в стружку: 14 % тепла переходит в сверло; 55 % тепла остается в детали и 3 % тепла рассеивается в окружающую среду. Величину тепловой деформации обрабатываемой заготовки определяют исходя из условия, что температурное поле в зоне резания постоянно
, (6.8)
где Q – тепло, полученное в зоне резания, ккал; с – удельная теплоемкость материала заготовки, ккал/(кг·0С); ρ – плотность материала; V – объем заготовки.
Погрешность от температурных деформаций заготовки определяется по формуле
, (6.9)
где α – температурный коэффициент линейного расширения.
При применении СОЖ (смазывающе-охлаждающей жидкости) тепловые деформации незначительны и их можно не учитывать.