Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
01_016.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
36.63 Mб
Скачать

7.2. Влияние и учёт нагрузки

При установившемся режиме КЗ влияние нагрузки проявляется, с одной стороны, в том, что предварительно нагруженный генератор имеет большую ЭДС, чем генератор, работающий на холостом ходу; в том, что, оставаясь присоединенной к сети, она может существенно изменить распределение токов в схеме.

Из простейшей схемы (рис. 7.2 а) видно, что нагрузка шунтирует поврежденную ветвь и тем самым уменьшает внешнее сопротивление цепи статора. Это приводит к увеличению тока генератора, уменьшению его напряжения и, соответственно, уменьшению тока в месте КЗ. С увеличением удалённости КЗ влияние нагрузки сказывается сильнее. Нагрузка, присоединенная непосредственно к точке КЗ, в установившемся режиме не играет никакой роли.

Промышленная нагрузка состоит преимущественно из синхронных двигателей, сопротивление которых, как известно, резко зависит от скольжения; последнее, в свою очередь, определяется напряжением у двигателя в рассматриваемом аварийном режиме. Эти зависимости нелинейны, что сильно усложняет достаточно точный учёт нагрузки, поэтому для упрощения практических расчётов нагрузку учитывают приближённо, характеризуя её некоторым постоянным сопротивлением.

На рис. 7.2 б генератор с ЭДС Еq и реактивностью хd работает на чисто индуктивную цепь, реактивность которой хвн. Для его напряжения можно написать, с одной стороны,

, (7.5)

а с другой,

(7.6)

Сопротивление нагрузки можно определить из совместного решения (7.5) и (7.6), положив хвннагр и U=Uном, что приводит к выражению

(7.7)

Как видно, величина х*нагр определяется параметрами генератора, причём влияние коэффициента мощности нагрузки, сказывается в скрытом виде – через значение Еq. При средних значениях параметров типовых генераторов, работающих с полной нагрузкой при cosj = 0,8, относительная величина сопротивления нагрузки после округления результатов подсчёта (7.7) составляет х*нагр=1,2. Эта величина отнесена к полной мощности нагрузки и к среднему напряжению ступени, где присоединена данная нагрузка.

ЭДС нагрузки в установившемся режиме трехфазного КЗ принимается равной нулю.

Рис. 7.2. Влияние и учёт нагрузки при трёхфазном КЗ

7.3. Аналитический расчёт при отсутствии в схеме генераторов с арв

Когда генераторы не имеют АРВ, расчёт установившегося режима трёхфазного КЗ сводится к определению токов и напряжений в линейной схеме. Порядок расчёта следующий:

1. Задаёмся базисными условиями (Sб и Uб).

2. Составляется схема замещения, в которую активные элементы (генераторы) вводятся ЭДС Еq и сопротивлением а нагрузка – Ен = 0 и хн= ), а пассивные элементы (трансформаторы, автотрансформаторы, воздушные и кабельные линии, реакторы) – только своими сопротивлениями.

3. Схема замещения преобразуется к простейшему виду, т. е. все сопротивления схемы замещения заменяются одним результирующим хс с приложенной за ним эквивалентной ЭДС Еэкв.

4. Пользуясь законом Ома, по результирующим ЭДС и сопротивлению определяется установившийся ток .

7.4. Аналитический расчёт при наличии в схеме генераторов с арв

Снижение напряжения при КЗ приводит в действие устройство АРВ, которое стремится поддерживать напряжение на выводах генераторов на уровне номинального путём увеличения тока возбуждения. Поэтому можно заранее предвидеть, что токи и напряжения при этих условиях всегда больше, чем при отсутствии АРВ. Однако рост тока возбуждения у генераторов ограничен I*fпр.

Следовательно, для каждого генератора можно установить наименьшую величину внешней реактивности при КЗ, за которой генератор при предельном возбуждении обеспечивает нормальное напряжение на своих выводах. Такую реактивность называют критической х*кр, которая может быть определена

(7.8)

и связанный с ней ток

. (7.9)

Относительное значение Е*qпр= I*fпр известно по каталожным данным системы возбуждения генераторов.

Среднее значение х*кр для типовых генераторов при номинальных условиях составляет 0,5, а критического тока – 2.

В установившемся режиме при трёхфазном КЗ генератор, имеющий АРВ, может оказаться в одном из двух режимов – предельного возбуждения нормального напряжения. Зная х*кр, достаточно сопоставить с ней внешнюю реактивность х*вн, чтобы однозначно решить вопрос, в каком режиме работает генератор.

Внешняя реактивность представляет собой суммарное сопротивление всех элементов сети, по которым протекает ток, от вывода генератора до точки КЗ.

При сравнении х*вн и х*кр следует помнить, что они должны быть приведены к общим базисным условиям.

В табл. 7.1 сведены все соотношения, характеризующие указанные выше режимы работы генераторов при КЗ.

Порядок расчёта следующий:

1. Составляется схема замещения, в которую генератор можно не вводить.

2. Определяется х*вн и х*кр.

3. Сравнивая между собой реактивности, определяют режим работы генератора.

4. В режиме предельного возбуждения генератор вводится в схеме замещения параметрами Е*fпр и

5. В режиме нормального напряжения генератор вводится в схему замещения Е=1 и хг = 0.

6. Определяется I(3)*¥ по выражениям, приведённым в табл. 7.1.

Таблица 7.1