
- •Свойства:
- •Интегрирование элементарных дробей.
- •Свойства определенного интеграла.
- •Вычисление определенного интеграла.
- •Теорема доказана.
- •Замена переменных.
- •Несобственные интегралы.
- •Вычисление длины дуги кривой.
- •Частные производные высших порядков.
- •Дифференциальное исчисление функции
- •Односторонние производные функции в точке.
- •Доказательство.
- •Свойства общего решения.
- •Дифференциальные уравнения первого порядка.
- •Уравнения с разделяющимися переменными
- •Подставляем полученное соотношение в исходное уравнение
Подставляем полученное соотношение в исходное уравнение
Из этого уравнения определим переменную функцию С1(х):
Интегрируя, получаем:
Подставляя это значение в исходное уравнение, получаем:
.
Таким образом, мы получили результат, полностью совпадающий с результатом расчета по методу Бернулли.
При выборе метода решения линейных дифференциальных уравнений следует руководствоваться простотой интегрирования функций, входящих в исходный интеграл.
Далее рассмотрим примеры решения различных дифференциальных уравнений различными методами и сравним результаты.
Пример.
Решить уравнение
Сначала
приведем данное уравнение к стандартному
виду:
Применим
полученную выше формулу:
Уравнение Бернулли.
Определение. Уравнением Бернулли называется уравнение вида
где P и Q – функции от х или постоянные числа, а n – постоянное число, не равное 1.
Для
решения уравнения Бернулли применяют
подстановку
,
с помощью которой, уравнение Бернулли
приводится к линейному.
Для этого разделим исходное уравнение на yn.
Применим
подстановку, учтя, что
.
Т.е. получилось линейное уравнение относительно неизвестной функции z.
Решение этого уравнения будем искать в виде:
Пример.
Решить уравнение
Разделим
уравнение на xy2:
Полагаем
.
Полагаем
Произведя обратную подстановку, получаем:
Пример.
Решить уравнение
Разделим
обе части уравнения на
Полагаем
Получили линейное неоднородное дифференциальное уравнение. Рассмотрим соответствующее ему линейное однородное уравнение:
Полагаем C = C(x) и подставляем полученный результат в линейное неоднородное уравнение, с учетом того, что:
Получаем:
Применяя обратную подстановку, получаем окончательный ответ: