Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
714380.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
4.09 Mб
Скачать

4. Условия сходимости и элементарные преобразования матрицы

Теорема. Если для приведенной системы (3) выполнено, по меньшей мере, одно из условий:

или ,

то процесс итерации сходится к единственному решению этой системы, независимо от выбора начального приближения.

Следствие. Для системы

, (i = 1, 2, ..., n),

метод итерации сходится, если выполнены неравенства:

, (i = 1, 2, ..., n),

т.е. если модули диагональных коэффициентов для каждого уравнения системы больше суммы модулей всех остальных коэффициентов (не считая свободных членов).

Элементарными преобразованиями матрицы называются следующие ее преобразования:

– транспонирование, т.е. замена каждой строки столбцом с тем же номером;

– перестановка двух строк или двух столбцов;

– умножение всех элементов строки или столбца на любое число c, отличное от нуля;

–прибавление ко всем элементам строки или столбца соответствующих элементов параллельного ряда, умноженных на одно и то же число.

5. Метод Зейделя (метод Гаусса-Зейделя, метод последовательных замещений)

Метод Зейделя представляет собой некоторую модификацию метода простой итерации. Основная его идея заключается в том, что при вычислении (k+1)-го приближения неизвестной xi учитываются уже вычисленные ранее (k+1) – е приближения неизвестных x1, х2, ...,

хi-l [2, 5].

В этом методе, как и в методе простой итерации, необходимо привести систему к виду (3), чтобы диагональные коэффициенты были максимальными по модулю, и проверить условия сходимости. Если условия сходимости не выполняются, то нужно произвести элементарные преобразования (см. п. 4). Пусть дана система из трех линейных уравнений. Приведем ее к виду (3). Выберем произвольно начальные приближения корней: х1(0), х2(0), х3(0), стараясь, чтобы они в какой-то мере соответствовали искомым неизвестным. За нулевое приближение можно принять столбец свободных членов, т.е. х(0) =

(т.е. x1(0)=1, x2(0)=2, x3(0)=3). Найдем первое приближение х(1) по формулам:

Следует обратить внимание на особенность метода Зейделя, которая состоит в том, что полученное в первом уравнении значение х1(l) сразу же используется во втором уравнении, а значения х1(1), х2(1) – в третьем уравнении и т.д. То есть все найденные значения х1(1) подставляются в уравнения для нахождения хi+1(1) [6, 8].

Рабочие формулы для метода Зейделя для системы трех уравнений имеют следующий вид:

Запишем в общем виде для системы n-уравнений рабочие формулы:

Заметим, что теорема сходимости для метода простой итерации справедлива и для метода Зейделя.

Зададим определенную точность решения , по достижении которой итерационный процесс завершается, т.е. решение продолжается до тех пор, пока не будет выполнено условие для всех уравнений: где i=1,2,3,…,n.

Пример №2. Методом Зейделя решить систему с точностью  = 10-3:

Решение.

1. Приведем систему к виду:

2. В качестве начального вектора х(0) возьмем элементы столбца свободных членов, округлив их значения до двух знаков после запятой:

3. Проведем итерации методом Зейделя. При k = 1

.

При вычислении х2(1) используем уже полученное значение х1(1) =

= 0,7512:

.

При вычислении х3(1) используем значения х1(1) и х2(1):

Наконец, используя значения х1(1), х2(1), х3(1), получаем:

Аналогичным образом ведем вычисления при k=2 и k=3. При k= 2:

При k= 3:

Найдем модули разностей значений при k = 2:

Они меньше заданного числа , поэтому в качестве решения возьмем: x1 = 0,80006, x2 = 1,00002, x3 = 1,19999, x4 = 1,40000.