Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
f0e7863e_organizm_i_sreda.doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
1.06 Mб
Скачать

Фотосинтез

Фотосинтез – это процесс синтеза органических соединений из неорганических веществ, идущий за счет энергии света.

Все живое современной биосферы зависит от этого процесса. Фотосинтез делает энергию солнца и углерод доступными для живых организмов и обеспечивает обогащение кислородом атмосферы Земли. Процесс фотосинтеза описывается суммарным уравнением:

6СО2 + 6Н2О + солнечная энергия = С6Н12О6 + 6О2

Для осуществления фотосинтеза необходим хлорофилл – вещество зеленого цвета, поглощающее солнечные лучи в красной и сине-фиолетовой частях спектра. У высших растений хлорофилл находится во внутренних мембранах хлоропластов – специализированных органелл растительной клетки, где происходят реакции фотосинтеза.

Фотосинтез протекает в две фазы – световую и темновую. Световая фаза идет только на свету, при этом под действием света молекулы хлорофилла теряют электроны и переходят в возбужденное состояние. Под влиянием положительно заряженных молекул хлорофилла происходит фотолиз воды с образованием молекулярного кислорода, электронов и протонов:

2 Н2О 4Н+ + О2 + 4е

Энергия солнечного излучения в световой фазе фотосинтеза используется хлоропластами для синтеза АТФ из АДФ и фосфата, а также для восстановления НАДФ (никотинамидадениннуклеотидфосфат) до НАДФН2.

В темновой фазе в присутствии АТФ и НАДФН2 при участии ферментов из диоксида углерода и водорода образуется глюкоза:

6СО2 + 24Н+ + АТФ = С6Н12О6 + 6Н2О

Углеводы, получающиеся в процессе фотосинтеза, используются далее как исходный материал для синтеза других органических соединений.

Хемосинтез

Хемосинтез – это синтез органических соединений из неорганических веществ с использованием химической энергии, выделяющейся в реакциях окисления неорганических веществ.

Некоторые группы бактерий – нитрифицирующие, железобактерии, серобактерии способны накапливать освобождающуюся в процессах окисления энергию и затем использовать ее для синтеза органических веществ. Процесс хемосинтеза протекает без участия хлорофилла и для него не обязательно наличие света. Например, нитрифицирующие бактерии окисляют аммиак до азотистой кислоты.

Освобождающаяся энергия накапливается в молекулах АТФ и используется для синтеза органических веществ. Этот синтез протекает по типу темновой фазы фотосинтеза.

Энергетический обмен

Энергия существует в природе в различных формах. Это энергия солнечного света, а также химическая, тепловая и электрическая. Организмам энергия необходима для активного транспортирования веществ, для синтеза белков и других биомолекул, для мышечных сокращений, для клеточного деления и т.д.

Первоисточником энергии в природе является солнце, но его энергию могут использовать только фотосинтетики, а все остальные организмы могут получать эту энергию лишь опосредованно, т.е. в форме энергии химических связей между атомами органических соединений. При разрыве связей энергия может высвобождаться. Но чаще всего она временно запасается в виде особо богатого энергией нуклеотида – аденозинтрифосфорной кислоты (АТФ). Клетка использует АТФ для всех дальнейших процессов жизнедеятельности.

Главная роль в энергетическом обмене клеток животных и человека принадлежит клеточному дыханию. Клеточное дыхание представляет собой процесс, в котором высокомолекулярные органические высокоэнергетические соединения, окисляясь, распадаются на низкомолекулярные или неорганические соединения, бедные энергией. При окислении с участием кислорода дыхание называется аэробным, а без его участия – анаэробным.

Процесс потребления кислорода из среды обитания и возвращение в эту среду диоксида углерода называется газообменом организма с окружающей средой. Это иной процесс, отличный от клеточного дыхания, путать их нельзя.

Последовательность расходования высокомолекулярных соединений такова: прежде всего углеводы, затем жиры и в последнюю очередь белки.

Выделение энергии происходит при отщеплении от АТФ одной фосфатной группы с образованием аденозиндифосфата (АДТ). При отщеплении от АДФ еще одной фосфатной группы образуется аденозинмонофосфат (АМФ). Существует и обратимая ферментативная реакция.

Энергетический обмен клетки осуществляется в три этапа.

Подготовительный этап: сложные органические соединения распадаются на более простые: белки на аминокислоты, полисахариды на моносахариды и т.д.

Этап неполного окисления (анаэробное дыхание или брожение). Неполному окислению могут подвергаться глюкоза, жирные кислоты, аминокислоты. При этом главным источников энергии в клетке является глюкоза. При бескислородном окислении одной молекулы глюкозы (процесс гликолиза) из двух молекул АДФ образуются две молекулы АТФ. В процессе гликолиза для нужд клетки извлекается не более 10 % энергии.

Этап полного расщепления (аэробное дыхание) протекает с обязательным участием кислорода. При дыхании последовательно проходит ряд ферментативных реакций. В условиях полного окисления, сопряженного с фосфорилированием АДФ до АТФ, недоокисленные продукты гликолиза отдают для нужд клетки оставшуюся в их химических связях энергию, которая аккумулируется в АТФ.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]