
- •«Конструирование и технология производства приборов»
- •1. Этапы конструирования
- •1.1. Предмет конструирование и технология производства рэа
- •1.2. Разделы конструкторско-технологического проектирования
- •1.3. Этапы развития рэ
- •1.4. Этапы жизни рэа
- •1.5. Этапы разработки электронной аппаратуры
- •1.6. Жизненный цикл электронной аппаратуры
- •1.7. Показатели рэа
- •1.8. Показатели рэа
- •2. Техническая документация
- •2.1. Единая система конструкторской документации
- •2.2. Единая система технологической документации
- •2.3. Особенности автоматизированного проектирования технической документации
- •2.4.Схемная документация
- •3. Модульный принцип конструирования
- •Микросхемы
- •Микросборки
- •Модули первого уровня
- •4. Системные факторы построения рэс
- •4.1. Состав и этапы разработки технического задания (тз)
- •4.1.1. Заявка на разработку
- •4.1.2. Структура и содержание тз
- •4.1.3. Этапы разработки тз
- •4.2. Учет системных факторов в тз
- •4.2.1. Факторы назначения и объекта-носителя
- •4.2.1.1. Классификация рэс
- •4.2.1.2. Особенности построения рэс различных классов
- •4.2.1.3. Особенности построения цифровых и аналоговых рэс
- •4.2.2. Факторы технической системы, конструктивной и технологической базы
- •5. Факторы окружающей среды
- •5.1. Виды климатических факторов
- •5.2. Отражение в тз факторов окружающей среды
- •5.3. Эксплуатационные факторы
- •5.4. Требования к конструкции по надежности (гост 20397-82)
- •6. Факторы взаимодействия «человек – машина»
- •6.1. Человек - оператор и рэс
- •6.1.1. Система «Человек – машина»
- •6.1.2. Оператор как "приемник", "ретранслятор" и "анализатор" информации
- •6.1.3. Повышение надежности работы Человека-оператора
- •6.2. Формирование и прием сигналов управления
- •6.2.1. Факторы, учитываемые при конструировании органов управления
- •1) Простые движения при нажиме кнопки, клавиши, повороте регулятора.
- •6.2.2. Закономерности зрительного восприятия информации
- •6.3. Эргономическая отработка конструкции
- •6.3.1. Общие положения
- •6.3.2. Этапы эргономической отработки конструкции
- •6.3.3. Оценка результатов принятых решений
- •6.4. Отражение в тз факторов системы "Человек-машина"
- •7. Тепловые характеристики конструкций рэс
- •7.1. Основные положения обеспечения защищенности рэс от тепла
- •7.1.1. Влияние теплового режима на надежность рэс
- •7.1.2. Задача обеспечения защищенности рэс от воздействия тепла
- •7.1.3. Способы отвода тепла в рэс
- •7.1.3.1. Кондуктивный теплообмен
- •7.1.3.2. Конвективный теплообмен
- •7.1.3.3. Излучение
- •7.2. Обеспечение нормального теплового режима рэс
- •7.2.1. Конструктивная реализация способов охлаждения
- •7.2.2. Выбор вида охлаждения
- •8. Механические характеристики конструкций рэс
- •8.1. Виды и характеристики механических воздействий на рэс
- •8.1.1. Вибрации в конструкциях рэс
- •8.1.2. Линейное и центробежное ускорение в конструкциях рэс
- •8.1.3. Удары в конструкциях рэс
- •8.1.4. Шум и акустические удары в конструкциях рэс
- •8.1.5. Характеристики внешних воздействий для различных групп рэс
- •8.2. Обеспечение защищенности конструкции рэс от механических воздействий
- •8.2.1. Характеристики защищенности рэс от механических воздействий
- •8.2.2. Задача обеспечения защищенности рэс от механических воздействий
- •8.3. Способы обеспечения защищенности рэс от механических воздействий
- •8.3.1. Принципы и основные элементы обеспечения защищенности рэс
- •8.3.2. Виброчастотная характеристика конструкции
- •8.3.3. Способы обеспечения защищенности рэс от механических воздействий
- •8.4. Конструктивная реализация защищенности рэс от механических воздействий
- •8.4.1. Повышение резонансных частот конструкции
- •8.4.2. Применение вибропоглощающих материалов в конструкции рэс
- •8.4.3. Конструкции рэс с амортизаторами
- •8.5. Методика обеспечения защищенности рэс от механических нагрузок
- •9. Печатные платы
- •9.1. Классификация конструкций печатных плат
- •9.2. Субтрактивные методы изготовления печатных плат
- •9.2.1. Химический метод
- •9.3. Аддитивные методы изготовления печатных плат
- •9.3.1. Аддитивный процесс
8.4.2. Применение вибропоглощающих материалов в конструкции рэс
В случае невозможности вывода резонансной частоты f0 конструкции за пределы диапазона воздействующих частот необходимо уменьшить коэффициент передачи энергии.
Известно, что коэффициент передачи колебаний печатной платы на резонансной частоте обычно пропорционален коэффициенту механических потерь . Для увеличения коэффициента механических потерь (КМП) и, следовательно, для уменьшения резонансных явлений в конструкции используют полимерные вязкие компаунды с большим КМП.
Наиболее часто используют следующие варианты:
приклеивание электрорадиоэлементов к плате вибропоглащающим компаундом;
заливка платы;
применение многослойных печатных плат, слои которых склеены
вибропоглащающим компаундом.
Рисунок 8.11 – Заливка платы вибропоглащающим материалом
Варианты структур, указанные на рисунке 8.11, имеют свои достоинства и недостатки. Выбор осуществляется в каждом конкретном случае, исходя из соответствующих требований.
8.4.3. Конструкции рэс с амортизаторами
Принцип виброизоляции заключается в размещении между объектом установки и РЭС специальных устройств- амортизаторов, которые поглощают и отражают механическую энергию. Поглощение энергии колебаний происходит демпфированием за счет трения в материале амортизаторов или в демпферах с сухим или вязким трением между элементами конструкции. Наиболее эффективно использование этого подхода при защите от вибрационных нагрузок.
Уменьшить степень влияния вибрации на блок можно с помощью установки блока на амортизаторы (виброизоляторы). (В соответствии с ГОСТ 34246-80 «Вибрация. Термины и определения» термин «амортизатор» заменен на термин «виброизолятор».), которые с одной стороны прикрепляются к блоку, а с другой - к основанию на объекте - носителе. Виброизолятор представляет собой колебательную систему с низкой резонансной частотой и с малым коэффициентом передачи колебаний в зарезонансной области. За счет этого уменьшается частотный спектр вибрации, передаваемой от основания к блоку.
Блок, установленный на виброизоляторах, имеет 6 степеней свободы: может независимо колебаться вдоль трех координат и вокруг них. В простейшем случае рассматривают колебания блока с одной степенью свободы. Эффективность виброизоляции оценивается коэффициентом изоляции , равным отношению амплитуды возмущающих колебаний к амплитуде вынужденных колебаний амортизированного РЭС.
В наиболее простом случае объект установки с массой М совершает колебания (t) = Аsint. Амплитуда колебаний А от объекта установки до РЭС с массой m здесь ослабляют амортизаторы с жесткостью k и демпфированием .
Рисунок 8.12 – РЭС с амортизаторами
Уравнение движения данной системы можно написать в виде неоднородного дифференциального уравнения.
Колебания РЭС x(t) находят как сумму общего и частного решения этого уравнения. В установившемся режиме в системе возникают колебания с частотой и амплитудой:
D
= A
.
Пренебрегая демпфированием, получаем соотношение для коэффициента виброизоляции:
=
.
Величина, обратная
коэффициенту виброизоляции, называется
коэффициентом
динамичности
.
На рисунке 8.12 показана зависимость
коэффициента динамичности
от отношения 0
при различных значениях демпфирования.
Из графиков видно, что амортизаторы
функционируют лишь в области частот
0
и эффект виброизоляции повышается при
ослаблении демпфирования. В области
резонанса (
= 0)
амортизаторы ухудшают виброизоляцию,
особенно при низком демпфировании, а в
области /01
виброизоляция отсутствует. Из сказанного
следует, что собственная частота должна
быть значительно ниже возмущающих
частот.
А. Схемы монтажа амортизаторов.
Рассмотрим наиболее распространенные схемы расположения амортизаторов относительно центра тяжести аппарата.
Схема нижнего монтажа используется чаще всего. Но при боковой вибрации возникают связанные колебания, поэтому следует предусматривать достаточный зазор между блоками и соседними конструкциями, чтобы избежать соударения.
Рисунок 8.13 – Схемы монтажа амортизаторов
Схему, в которой амортизаторы расположены в плоскости, проходящей через центр тяжести, целесообразно использовать в условиях пространственного нагружения на реактивных самолетах и ракетах.
Монтаж в двух горизонтальных плоскостях обычно используется, если отношение высоты блока к ширине больше двух.
Схема двухстороннего монтажа обеспечивает защиту от воздействия внешних сил, действующих во всех направлениях. Амортизаторы предварительно нагружены, что делает систему более жесткой.
Схема монтажа амортизаторов под углом к осям симметрии блока является наиболее пригодной для изоляции пространственной вибрации при горизонтальном положении основания. В схеме, изображенной на рис.ж характеристики системы амортизации практически одинаковы при всех положениях основания.
Б. Выбор амортизаторов.
Выбор амортизаторов производят, имея следующие данные:
параметры механических воздействий на носителе;
параметры внешней среды;
конструктивные параметры РЭС;
допустимые механические воздействия на РЭС;
статические и динамические характеристики амортизаторов.
При выборе амортизаторов часто возникает противоречие между вышеизложенными соображениями для защиты РЭС от вибраций и требованиями к защите от ударов и линейных ускорений. Дело в том, что малая жесткость (низкая собственная частота) и ход амортизаторов в случае удара приводят к их чрезмерной деформации, в предельном случае до упора, вызывая значительные перегрузки. Проблему решают применением амортизаторов с нелинейной характеристикой, у которых демпфирование изменяется в зависимости от статической нагрузки.
Основными параметрами амортизаторов, таким образом, являются их собственная частота (при номинальной статической нагрузке), статическая нагрузка, коэффициент демпфирования и показатели климатических воздействий. В зависимости от частоты собственных колебаний все амортизаторы делятся на низкочастотные, среднечастотные и высокочастотные.
В. Защита РЭС от ударов амортизаторами.
Движение амортизированной системы, вызываемое ударной силой, в течение времени действия этой силы определяется законом вынужденных колебаний. После прекращения действия ударной силы движение системы подчиняется закону свободных колебаний. Начальными условиями при этом являются смещение и скорость движения в момент прекращения действия удара.