
- •«Конструирование и технология производства приборов»
- •1. Этапы конструирования
- •1.1. Предмет конструирование и технология производства рэа
- •1.2. Разделы конструкторско-технологического проектирования
- •1.3. Этапы развития рэ
- •1.4. Этапы жизни рэа
- •1.5. Этапы разработки электронной аппаратуры
- •1.6. Жизненный цикл электронной аппаратуры
- •1.7. Показатели рэа
- •1.8. Показатели рэа
- •2. Техническая документация
- •2.1. Единая система конструкторской документации
- •2.2. Единая система технологической документации
- •2.3. Особенности автоматизированного проектирования технической документации
- •2.4.Схемная документация
- •3. Модульный принцип конструирования
- •Микросхемы
- •Микросборки
- •Модули первого уровня
- •4. Системные факторы построения рэс
- •4.1. Состав и этапы разработки технического задания (тз)
- •4.1.1. Заявка на разработку
- •4.1.2. Структура и содержание тз
- •4.1.3. Этапы разработки тз
- •4.2. Учет системных факторов в тз
- •4.2.1. Факторы назначения и объекта-носителя
- •4.2.1.1. Классификация рэс
- •4.2.1.2. Особенности построения рэс различных классов
- •4.2.1.3. Особенности построения цифровых и аналоговых рэс
- •4.2.2. Факторы технической системы, конструктивной и технологической базы
- •5. Факторы окружающей среды
- •5.1. Виды климатических факторов
- •5.2. Отражение в тз факторов окружающей среды
- •5.3. Эксплуатационные факторы
- •5.4. Требования к конструкции по надежности (гост 20397-82)
- •6. Факторы взаимодействия «человек – машина»
- •6.1. Человек - оператор и рэс
- •6.1.1. Система «Человек – машина»
- •6.1.2. Оператор как "приемник", "ретранслятор" и "анализатор" информации
- •6.1.3. Повышение надежности работы Человека-оператора
- •6.2. Формирование и прием сигналов управления
- •6.2.1. Факторы, учитываемые при конструировании органов управления
- •1) Простые движения при нажиме кнопки, клавиши, повороте регулятора.
- •6.2.2. Закономерности зрительного восприятия информации
- •6.3. Эргономическая отработка конструкции
- •6.3.1. Общие положения
- •6.3.2. Этапы эргономической отработки конструкции
- •6.3.3. Оценка результатов принятых решений
- •6.4. Отражение в тз факторов системы "Человек-машина"
- •7. Тепловые характеристики конструкций рэс
- •7.1. Основные положения обеспечения защищенности рэс от тепла
- •7.1.1. Влияние теплового режима на надежность рэс
- •7.1.2. Задача обеспечения защищенности рэс от воздействия тепла
- •7.1.3. Способы отвода тепла в рэс
- •7.1.3.1. Кондуктивный теплообмен
- •7.1.3.2. Конвективный теплообмен
- •7.1.3.3. Излучение
- •7.2. Обеспечение нормального теплового режима рэс
- •7.2.1. Конструктивная реализация способов охлаждения
- •7.2.2. Выбор вида охлаждения
- •8. Механические характеристики конструкций рэс
- •8.1. Виды и характеристики механических воздействий на рэс
- •8.1.1. Вибрации в конструкциях рэс
- •8.1.2. Линейное и центробежное ускорение в конструкциях рэс
- •8.1.3. Удары в конструкциях рэс
- •8.1.4. Шум и акустические удары в конструкциях рэс
- •8.1.5. Характеристики внешних воздействий для различных групп рэс
- •8.2. Обеспечение защищенности конструкции рэс от механических воздействий
- •8.2.1. Характеристики защищенности рэс от механических воздействий
- •8.2.2. Задача обеспечения защищенности рэс от механических воздействий
- •8.3. Способы обеспечения защищенности рэс от механических воздействий
- •8.3.1. Принципы и основные элементы обеспечения защищенности рэс
- •8.3.2. Виброчастотная характеристика конструкции
- •8.3.3. Способы обеспечения защищенности рэс от механических воздействий
- •8.4. Конструктивная реализация защищенности рэс от механических воздействий
- •8.4.1. Повышение резонансных частот конструкции
- •8.4.2. Применение вибропоглощающих материалов в конструкции рэс
- •8.4.3. Конструкции рэс с амортизаторами
- •8.5. Методика обеспечения защищенности рэс от механических нагрузок
- •9. Печатные платы
- •9.1. Классификация конструкций печатных плат
- •9.2. Субтрактивные методы изготовления печатных плат
- •9.2.1. Химический метод
- •9.3. Аддитивные методы изготовления печатных плат
- •9.3.1. Аддитивный процесс
7. Тепловые характеристики конструкций рэс
7.1. Основные положения обеспечения защищенности рэс от тепла
7.1.1. Влияние теплового режима на надежность рэс
В процессе эксплуатации РЭС подвергаются влиянию положительных и отрицательных температур, источниками которых являются окружающая среда, объект установки и сама РЭС. Диапазон изменения температур в околоземной атмосфере может составлять 100С, а в космосе он еще шире. Объект установки РЭС может иметь источники тепла (двигатели) и холода (баки с охлажденным топливом, жидкий азот для охлаждения чувствительных элементов). Сама РЭС является источником тепла, поскольку представляет собой систему преобразующую энергию.
Баланс энергии в РЭС определяется выражением
Р = РП + РР + РН,
где Р - полезная энергия, подводимая к изделию от источника питания;
РП - полезная энергия, затрачиваемая на функционирование изделия;
РР - тепловая энергия, рассеиваемая в окружающем пространстве;
РН - тепловая энергия, затрачиваемая на нагрев элементов.
Рассеиваемая энергия составляет 70...90% от энергии потребления:
РР + РН = (0,7...0,9)Р.
КПД любого электронного устройства определяется как
=
.
Таким образом, КПД устройства тем выше, чем меньше расход энергии на тепло. Обычно КПД РЭС невелик. Следовательно, значительная часть энергии выделяется в виде тепла. Если эту энергию не рассеять в окружающее пространство, то она пойдет на нагрев РЭС.
Воздействие положительных и отрицательных температур может снизить надежность аппаратуры. Причинами п а р а м е т р и ч е с к и х отказов могут быть:
ухудшение изоляционных свойств материалов;
изменение коэффициента усиления;
изменение параметров конденсаторов, резисторов, магнитных сердечников и т.п.
Все эти факторы могут привести к искажению сигнала до уровня, при котором нормальное функционирование невозможно.
Причинами в н е з а п н ы х отказов, вызванных воздействием низких температур являются:
затвердевание резины (разгерметизация прокладок, выход из строя амортизаторов);
увеличение вязкости смазок;
замерзание влаги, вызывающее увеличение микротрещин в материалах, и т.п.
Повышение температуры приводит к:
выделению летучих веществ из изоляционных и смазочных материалов, что изменяет их свойства;
изменению структуры керамических материалов;
старению материалов;
образованию пор в паяном шве и т.п.
Если в конструкции имеются материалы с разными температурными коэффициентами линейного расширения (ТКЛР), то это приводит к поломке конструкции: обрыв проводников в МПП, заклинивание подшипников и зубчатых пар, выход из строя паяных, сварных и клеевых швов.
Функциональные элементы и механические части РЭС различаются т е р м о с т о й к о с т ь ю, т.е. способностью элементов и материалов кратковременно выдерживать воздействие высоких и низких температур, а также термоударов. Термостойкость определяют по температуре, соответствующей началу существенных изменений параметров или свойств элементов. Поэтому элементы и материалы могут нормально функционировать в пределах некоторого диапазона температур. (Это явление наблюдается и в природе - нормальная температура человеческого тела 36,6 0,1С).
Таким образом, обеспечение надежности РЭС связано с обеспечением температуры всех их частей в заданных пределах.
Т е п л о в ы м р е ж и м о м называется пространственно-временное изменение температуры устройства. Оно зависит от мощности источников и поглотителей энергии, геометрических и физических параметров среды, поглощающей тепло.
Тепловой режим блока РЭС характеризуется совокупностью температур отдельных его точек в пространстве и во времени - т е м п е р а т у р н ы м п о л е м, Т (х,у,z,t).
Рисунок 7.1 – Температурное поле РЭС
Если температура в любой из точек не выходит за пределы допустимого, то такой тепловой режим называется н о р м а л ь н ы м.
В зависимости от стабильности во времени тепловой режим может быть стационарным и нестационарным.
С т а ц и о н а р н ы й режим характеризуется неизменностью температурного поля во времени, обусловленной термодинамическим равновесием между источником и поглотителями тепловой энергии.
Н е с т а ц и о н а р н ы й режим характеризуется сильной зависимостью температурного поля от времени. Он обычно имеет место при одиночных и кратковременно повторяемых тепловых нагрузках.
Увеличение функциональной сложности при уменьшении габаритов РЭС приводит к теплонагруженности аппаратуры, что требует принятия специальных мер для обеспечения нормального теплового режима.