
- •«Конструирование и технология производства приборов»
- •1. Этапы конструирования
- •1.1. Предмет конструирование и технология производства рэа
- •1.2. Разделы конструкторско-технологического проектирования
- •1.3. Этапы развития рэ
- •1.4. Этапы жизни рэа
- •1.5. Этапы разработки электронной аппаратуры
- •1.6. Жизненный цикл электронной аппаратуры
- •1.7. Показатели рэа
- •1.8. Показатели рэа
- •2. Техническая документация
- •2.1. Единая система конструкторской документации
- •2.2. Единая система технологической документации
- •2.3. Особенности автоматизированного проектирования технической документации
- •2.4.Схемная документация
- •3. Модульный принцип конструирования
- •Микросхемы
- •Микросборки
- •Модули первого уровня
- •4. Системные факторы построения рэс
- •4.1. Состав и этапы разработки технического задания (тз)
- •4.1.1. Заявка на разработку
- •4.1.2. Структура и содержание тз
- •4.1.3. Этапы разработки тз
- •4.2. Учет системных факторов в тз
- •4.2.1. Факторы назначения и объекта-носителя
- •4.2.1.1. Классификация рэс
- •4.2.1.2. Особенности построения рэс различных классов
- •4.2.1.3. Особенности построения цифровых и аналоговых рэс
- •4.2.2. Факторы технической системы, конструктивной и технологической базы
- •5. Факторы окружающей среды
- •5.1. Виды климатических факторов
- •5.2. Отражение в тз факторов окружающей среды
- •5.3. Эксплуатационные факторы
- •5.4. Требования к конструкции по надежности (гост 20397-82)
- •6. Факторы взаимодействия «человек – машина»
- •6.1. Человек - оператор и рэс
- •6.1.1. Система «Человек – машина»
- •6.1.2. Оператор как "приемник", "ретранслятор" и "анализатор" информации
- •6.1.3. Повышение надежности работы Человека-оператора
- •6.2. Формирование и прием сигналов управления
- •6.2.1. Факторы, учитываемые при конструировании органов управления
- •1) Простые движения при нажиме кнопки, клавиши, повороте регулятора.
- •6.2.2. Закономерности зрительного восприятия информации
- •6.3. Эргономическая отработка конструкции
- •6.3.1. Общие положения
- •6.3.2. Этапы эргономической отработки конструкции
- •6.3.3. Оценка результатов принятых решений
- •6.4. Отражение в тз факторов системы "Человек-машина"
- •7. Тепловые характеристики конструкций рэс
- •7.1. Основные положения обеспечения защищенности рэс от тепла
- •7.1.1. Влияние теплового режима на надежность рэс
- •7.1.2. Задача обеспечения защищенности рэс от воздействия тепла
- •7.1.3. Способы отвода тепла в рэс
- •7.1.3.1. Кондуктивный теплообмен
- •7.1.3.2. Конвективный теплообмен
- •7.1.3.3. Излучение
- •7.2. Обеспечение нормального теплового режима рэс
- •7.2.1. Конструктивная реализация способов охлаждения
- •7.2.2. Выбор вида охлаждения
- •8. Механические характеристики конструкций рэс
- •8.1. Виды и характеристики механических воздействий на рэс
- •8.1.1. Вибрации в конструкциях рэс
- •8.1.2. Линейное и центробежное ускорение в конструкциях рэс
- •8.1.3. Удары в конструкциях рэс
- •8.1.4. Шум и акустические удары в конструкциях рэс
- •8.1.5. Характеристики внешних воздействий для различных групп рэс
- •8.2. Обеспечение защищенности конструкции рэс от механических воздействий
- •8.2.1. Характеристики защищенности рэс от механических воздействий
- •8.2.2. Задача обеспечения защищенности рэс от механических воздействий
- •8.3. Способы обеспечения защищенности рэс от механических воздействий
- •8.3.1. Принципы и основные элементы обеспечения защищенности рэс
- •8.3.2. Виброчастотная характеристика конструкции
- •8.3.3. Способы обеспечения защищенности рэс от механических воздействий
- •8.4. Конструктивная реализация защищенности рэс от механических воздействий
- •8.4.1. Повышение резонансных частот конструкции
- •8.4.2. Применение вибропоглощающих материалов в конструкции рэс
- •8.4.3. Конструкции рэс с амортизаторами
- •8.5. Методика обеспечения защищенности рэс от механических нагрузок
- •9. Печатные платы
- •9.1. Классификация конструкций печатных плат
- •9.2. Субтрактивные методы изготовления печатных плат
- •9.2.1. Химический метод
- •9.3. Аддитивные методы изготовления печатных плат
- •9.3.1. Аддитивный процесс
6. Факторы взаимодействия «человек – машина»
В настоящем разделе рассматривается особая группа факторов влияющих на процесс и результат проектирования РЭС. Особенность состоит в том, что воздействия определяются совершенно особым субъектом деятельности при проектировании – человеком.
Для начала необходимо определить роль и место человека в жизни РЭС. Для решения этого вопроса рассмотрим с общих позиций ситуацию: будем считать, что речь идет о роли человека при взаимодействии с какой-либо машиной, т.е. определим роль человека-оператора в человеко-машинной системе при выполнении управленческой деятельности.
6.1. Человек - оператор и рэс
Человек-оператор является интегральным и определяющим звеном любой системы управления, независимо от степени ее автоматизации. Им принимаются принципиальные решения, он является юридическим лицом. Все это заставляет внимательно подходить к вопросам работы человека с РЭС, изучать и рационально использовать его навыки и способности, создавать для него комфортные условия для работы.
6.1.1. Система «Человек – машина»
В соответствии с ГОСТ 21033-75 человека-оператора (Ч-О) рассматривают как осуществляющего трудовую деятельность посредством взаимодействия с машиной и окружающей средой. Эта система получила наименование "Человек-машина".
В настоящее время считают, что машине следует отдавать предпочтение:
1) при выработке частных решений на основе общих правил,
2) при математических расчетах по определенным формулам,
3) при выполнении стандартных действий,
4) при необходимости сохранения в оперативной памяти большого количества информации,
5) при быстрых реакциях и значительных усилиях в процессе управления.
Если необходимо делать обобщения или формировать решение на основе ограниченной информации, опознать объект в условиях помех, реагировать на случайные и непредвиденные обстоятельства, решать задачи, которые по своему характеру не могут быть алгоритмизированы, то предпочтение отдается человеку.
Для правильного использования человека в роли "машины" управления мало знать перечисленные выше общие принципы. Необходимо знать и конкретные особенности работы человека в различных условиях. Эти условия определяются инженерной психологией и принципами эстетического восприятия человеком информации, получаемой при работе с РЭС.
6.1.2. Оператор как "приемник", "ретранслятор" и "анализатор" информации
Инженерная психология - наука, рассматривающая Ч-О в виде машины по приему, переработке и выработке информации в виде сигналов разнообразной физической природы. Она изучает:
сенсорный вход (органы чувств или рецепторы человека) и моторный (двигательный) выход Ч-О;
процессы переработки информации и распределение функций между человеком-оператором и машиной;
нормальные и критические условия жизнедеятельности Ч-О.
Ч-О и РЭС представляет собой две части комплекса, для нормальной работы которого необходимо их согласование. Поэтому между ними имеется целая система технических устройств, передающих информацию от РЭС к человеку и наоборот. Для действенности этой системы нужно решить вопросы: какое количество информации человек может принять, переработать и передать в единицу времени; какова его "пропускная способность" и предельные скорости различных реакций; какова точность восприятия и выдачи различных сигналов; каково время "задержки" (обработки) сигнала оператором; какова надежность его работы. Все эти вопросы должны решаться под углом зрения "подгонки" РЭС к оператору, а не наоборот.
Сложность решения этих вопросов объясняется тем, что прием и переработка информации Ч-О - процессы познавательные, складывающиеся из ощущения, восприятия, представления и мышления.
Рассмотрим, как происходит процесс управления РЭС:
Рисунок 6.1 – Последовательность стадий управления
Из рассмотрения процесса управления в системе видно, что Ч-О может выступать в роли "приемника" информации, "ретранслятора" информации от одного звена к другому, "анализатора" информации и исполнителя принятого решения. Он может выполнять программирование работы РЭС, следить за ее состоянием, или быть только исполнителем команд.
Во всех случаях основным показателем его работы будут:
время полного цикла регулирования;
точность и надежность работы.
Время полного цикла регулирования (оборота сигнала по контуру Ч-О - РЭС) можно представить в виде суммы:
,
где
- время задержки сигнала в i-м
звене системы РЭС;
n - общее количество звеньев;
Т0 - время задержки сигнала оператором (от момента поступления сигнала до ответа на него действием).
Величина То лежит в пределах 0,1…0,5 с и более, в то время как ti обычно на 2…3 порядка меньше.
Время от подачи сигнала до начала движения зависит от модальности ощущения, определяемой возбуждаемым анализатором. Значения этих величин для возбуждения средней интенсивности лежат в пределах:
тактильный анализатор - 0,09…0,22 с,
слуховой анализатор - 0,12…0,18 с,
зрительный анализатор - 0,15…0,22 с,
обонятельный анализатор - 0,31…0,39 с,
болевой анализатор - 0,13…0,89 с.
Поэтому общее время, затрачиваемое оператором на получение информации от индикаторов и выполнение ответных действий Т0, можно представить в виде:
г
де
К - количество индикаторов (стрелок,
знаков);
ti - время перевода глаз с одного индикатора на другой;
i - время спонтанной (самопроизвольной) отвлекаемости Ч-О;
tc - время выполнения моторных (простых) действий по управлению i-м регулятором;
tmi - количество регуляторов РЭС;
ni - количество однотипных индикаторов или периодичность наблюдения или регулировки.
Для работы с РЭС наиболее характерны дизъюнктивные реакции (реакции выбора) оператора, которые характеризуется необходимостью отвечать действием только на некоторые из сигналов. Длительность таких реакций больше, чем у простых сенсомоторных.
Время обращения сигнала по контуру управления можно сократить, если создать оператору нормальные условия работы и натренировать его на управление данным РЭС.