
- •3 Физиология нервной системы
- •3.1. Этапы развития нервной системы
- •3.1.1. Нервная система беспозвоночных животных
- •3.1.2. Нервная система позвоночных животных
- •3.2. Общие принципы координационной деятельности центральной нервной системы
- •3.2.1. Интегративная и координационная деятельность нервной клетки
- •3.2.2. Принцип общего конечного пути
- •3.2.3. Временная и пространственная суммация. Окклюзия
- •3.2.4. Торможение
- •3.2.5. Принцип доминанты
- •3.3. Спинной мозг
- •3.3.1. Нейронные структуры и их свойства
- •3.3.2. Рефлекторная функция спинного мозга
- •3.3.3. Проводниковые функции спинного мозга
- •3.4. Продолговатый мозг и мост
- •3.4.1. Строение продолговатого мозга и моста
- •3.4.2. Рефлексы продолговатого мозга
- •3.4.3. Функции ретикулярной формации стволовой части мозга
- •3.5. Средний мозг
- •3.5.1. Морфофункциональная организация среднего мозга
- •3.5.2. Участие среднего мозга в регуляции движений и позного тонуса
- •3.6. Мозжечок
- •3.6.1. Структурная организация и связи мозжечка
- •3.6.2. Функции мозжечка
- •3.7. Промежуточный мозг
- •3.7.1. Структура промежуточного мозга
- •3.7.2. Морфофункциональная организация таламуса
- •3.7.3. Гипоталамус
- •3.7.4. Роль гипоталамуса в регуляции вегетативных функций
- •3.7.5. Терморегуляционная функция гипоталамуса
- •3.7.6. Участие гипоталамуса в регуляции поведенческих реакций
- •3.7.7. Гипоталамо—гипофизарная система
- •3.8. Лимбическая система
- •3.8.1. Анатомические структуры лимбической системы
- •3.8.2. Функции лимбической системы
- •3.8.3. Роль лимбической системы в формировании эмоций
- •3.9. Базальные ядра и их функции
- •3.10. Кора больших полушарий
- •3.10.1. Морфофункциональная организация коры больших полушарий
- •3.10.2. Проекционные зоны коры
- •3.10.3. Колончатая организация зон коры
- •3.11. Электрические явления в коре головного мозга
- •3.11.1. Электроэнцефалография
- •3.11.2. Метод вызванных потенциалов
- •3.12. Закономерности эволюции коры больших полушарий
- •3.12.1. Происхождение новой коры
- •3.12.2. Организация новой коры у низших млекопитающих
- •3.12.3. Организация новой коры у высших млекопитающих
- •3.12.5. Развитие корковых межнейронных связей
- •3.13. Наследственно закрепленные формы поведения
- •3.13.1. Безусловные рефлексы.
- •3.13.2. Достижения этологов в исследовании врожденных форм поведения
- •3.14. Приобретенные формы поведения
- •3.14.1. Классификация форм научения
- •3.14.2. Сон как форма приобретенного поведения
- •Быстрый сон у животных и человека
- •3.14.3. Закономерности условнорефлекторной деятельности
- •3.14.4. Торможение условных рефлексов
- •3.15. Основные механизмы работы мозга
- •3.15.1. Механизмы формирования условных рефлексов. Теория конвергенции
- •3.15.2. Механизмы условного торможения
- •3.16. Механизмы памяти
- •3.16.1. Кратковременная память
- •3.16.2. Долговременная память
- •3.17. Интегративная деятельность мозга и поведение
- •3.17.1. Доминанта и условный рефлекс
- •3.17.2. Высшие интегративные системы мозга
- •3.17.3. Эволюция ассоциативных систем
- •3.17.4. Эволюция интегративной деятельности мозга
- •3.17.5. Онтогенез ассоциативных систем мозга
- •3.18. Функциональная структура поведенческого акта
- •3.18.1. Основные поведенческие доминанты
- •3.18.2. Ассоциативные системы мозга и структура поведения
- •3.19. Особенности высшей нервной (психической) деятельности человека
- •3.19.1. Физиологические основы психики
- •3.19.2. Сознание и неосознаваемое
- •3.20. Функциональная межполушарная асимметрия
- •Межполушарные различия при зрительном восприятии
- •3.21. Формирование высшей нервной деятельности ребенка
- •3.22. Мышление и речь
- •3.23. Сновидения, гипноз
- •3.24. Трудовая деятельность человека—оператора
- •3.25. Центральная регуляция движений
- •3.25.1. Управление ориентационными движениями и позой
- •3.25.2. Управление локомоцией
- •3.25.3. Организация манипуляторных движений
- •3.25.4. Корковая сенсомоторная интеграция
- •3.25.5. Программирование движений
- •3.25.6. Функциональная структура произвольного движения
- •3.26. Эмоции как компонент целостных поведенческих реакций
- •3.26.1. Биологическая роль эмоций
- •3.26.2. Эмоции и психическая деятельность
- •3.26.3. Вегетативные реакции, сопутствующие эмоциональному состоянию
- •3.26.4. Участие различных структур мозга в формировании эмоциональных состояний
- •3.26.5. Эмоциогенные системы мозга
- •3.26.6. Влияние эмоциональных состояний на научение и память
- •3.26.7. Неврозы
- •3.27. Гематоэнцефалический барьер
- •Рекомендуемая литература
3.2.5. Принцип доминанты
При объединении нескольких локальных сетей формируются нервные центры, которые представляют собой комплекс элементов, необходимых и достаточных для осуществления определенного рефлекса или более сложного поведенческого акта. В свою очередь, нервные центры, расположенные в различных отделах мозга, могут кооперироваться в так называемые распределенные системы, которые координируют "деятельность организма в целом. Эти системы имеют иерархическую структуру и представляют собой следующий, более высокий интегративный уровень ЦНС, деятельность которого базируется на некоторых общих принципах работы нервных центров. Одним из таких принципов является открытый А. А. Ухтомским принцип доминанты.
Под доминантой А. А. Ухтомский понимал господствующий очаг возбуждения, предопределяющий характер текущих реакций центров в данный момент. Такой господствующий, или доминантный, центр может возникнуть в различных этажах ЦНС при достаточно длительном действии гуморальных или рефлекторных раздражителей и характеризуется: 1) наличием повышенной возбудимости; 2) инерционностью, обусловленной длительными следовыми процессами; 3) способностью к суммации и сопряженному торможению других центров, функционально несовместимых с деятельностью центров доминантного очага. В целом доминанта как состояние характеризуется своей направленностью и создает определенный вектор поведения.
Указанные выше черты доминанты можно проследить на примере обнимательного рефлекса у лягушек, который возникает в период спаривания в результате гормональных воздействий. Легчайшее прикосновение к «брачным» мозолям на больших пальцах передних конечностей самца тотчас вызывает обнимательный рефлекс, что свидетельствует о наличии повышенной возбудимости флексорных (сгибательных) центров конечностей. Раздражение кожи механическими, химическими или электрическими стимулами приводит к усилению рефлекса, что является показателем суммации посторонних раздражителей. И наконец, высокий порог, необходимый для вызова защитных реакций, указывает на сопряженное торможение других центров.
Рассматривая доминанту как общий принцип работы нервных центров, А. А. Ухтомский считал, что она связана с возбуждением целого созвездия, или констелляции нервных центров, которые временно кооперируются при выполнении биологически важной функции. Это созвездие создает динамический функциональный орган, сообщающий организму единство действия в данный момент. Формирование констелляции нервных центров, согласно А. А. Ухтомскому, может происходить за счет импульсных взаимодействий и сонастраивания работающих центров на единый ритм активности (усвоение ритма).
Сформулированный А. А. Ухтомским в 1923 г. принцип доминанты не является архаизмом, так как современная физиология накопила много фактов, свидетельствующих о правильности основных положений этой теории.
Сегодня не вызывает сомнения возможность повышения возбудимости центров под влиянием рефлекторных и гуморальных воздействий. В некоторых участках мозга (латеральный и передний гипоталамус, предоптическая область) обнаружены центральные рецепторы, реагирующие на содержание в крови питательных веществ, половых гормонов и других факторов. Возбуждение этих рецепторов может стать источником так называемых мотиваций (пищевой, половой и т. п.) и привести к формированию доминантных состояний соответствующих нервных центров.
Согласно современным представлениям (функциональная система Анохина), любой поведенческий акт, в том числе и условный рефлекс, начинается с анализа и синтеза афферентной информации, которые включают в себя доминирующее мотивационное возбуждение, устраняющее избыточные степени свободы.
Доминирующий очаг возбуждения может возникнуть не только за счет гуморальных воздействий, но и под влиянием нервных сигналов, изменяющих возбудимость центральных нейронов. Это хорошо иллюстрируется моделью корковой доминанты путем поляризации анодом слабого постоянного тока сенсомоторной коры кролика в месте представительства одной из конечностей. Нейроны, расположенные в области такого искусственно созданного доминантного очага, обладают способностью суммировать возбуждение, вызванное посторонним, ранее индифферентным раздражителем, и увеличивать частоту своих импульсных разрядов в ответ на световые и звуковые стимулы. В результате индифферентные раздражители на фоне изменяющей возбудимость анодной поляризации начинают вызывать движения соответствующей конечности. Таким образом, анодная поляризация, которая является эквивалентом достаточно долгой нервной сигнализации, формирует доминантное состояние нервного центра, которое может поддерживаться довольно длительное время.
Эта инерционность доминанты, как уже отмечалось выше, обусловлена длительными следовыми процессами, механизмы которых детально освещены современной физиологией. В естественных условиях длительное следовое возбуждение может быть обусловлено: 1) суммацией ВПСП, вызванных приходящими к нейронам подпороговыми нервными импульсами; 2) синаптической потенциацией (облегчением) при ритмическом раздражении пресинаптических входов; 3) изменением концентрации ионов К+ в синаптической щели, который как деполяризатор усиливает вхождение ионов Са2+ в пресинаптическое окончание; 4) метаболическими следами, связанными с влиянием медиаторов на циклазные системы постсинаптических клеток; 5) циклическими связями в ЦНС, способными обеспечить следовую самостимуляцию центров.
Следует отметить, что способность к длительному хранению следовых процессов выражена по—разному в различных отделах мозга. Так, например, если в спинальных центрах постсинаптическая потенциация длится минуты, то в центрах гиппокампа она сохраняется часы и даже сутки. Очевидно, такие специализированные блоки памяти, как гиппокамп, могут быть не только участниками доминантных констелляций, но и хранителями следовых процессов от пережитых доминант, представляющих собой системную реакцию мозга.
Доминантное состояние как системная реакция наряду с суммацией посторонних раздражении предполагает сопряженное торможение конкурирующих центров. Феномен сопряженного торможения продемонстрирован во многих отделах ЦНС, где оно связано с наличием коллатералей сенсорных нейронов и специализированных вставочных нейронов. В качестве примера можно привести сопряженное торможение между отдельными колонками (модулями) сенсо—моторной коры (см. разд. 3.10.3), которое определяет степень вовлечения того или иного структурного модуля в распределенную систему. Сама гипотеза колончатой организации коры больших полушарий и объединения групп модулей была выдвинута В. Маунткаслом (1957), который представлял головной мозг как распределенную систему нейронных модулей, связанных между собой многократно и очень сложно. Информация распространяется по такой системе по многим разным путям, и доминирование того или иного из модулей составляет динамическое и изменчивое свойство системы.
При всей привлекательности такого подхода к пониманию функций мозга его нельзя признать оригинальным, так как еще в 1923 г. А. А. Ухтомским было сформулировано представление о динамическом функциональном органе как о временной кооперации нервных центров, сообщающей организму единство действия.