
- •3 Физиология нервной системы
- •3.1. Этапы развития нервной системы
- •3.1.1. Нервная система беспозвоночных животных
- •3.1.2. Нервная система позвоночных животных
- •3.2. Общие принципы координационной деятельности центральной нервной системы
- •3.2.1. Интегративная и координационная деятельность нервной клетки
- •3.2.2. Принцип общего конечного пути
- •3.2.3. Временная и пространственная суммация. Окклюзия
- •3.2.4. Торможение
- •3.2.5. Принцип доминанты
- •3.3. Спинной мозг
- •3.3.1. Нейронные структуры и их свойства
- •3.3.2. Рефлекторная функция спинного мозга
- •3.3.3. Проводниковые функции спинного мозга
- •3.4. Продолговатый мозг и мост
- •3.4.1. Строение продолговатого мозга и моста
- •3.4.2. Рефлексы продолговатого мозга
- •3.4.3. Функции ретикулярной формации стволовой части мозга
- •3.5. Средний мозг
- •3.5.1. Морфофункциональная организация среднего мозга
- •3.5.2. Участие среднего мозга в регуляции движений и позного тонуса
- •3.6. Мозжечок
- •3.6.1. Структурная организация и связи мозжечка
- •3.6.2. Функции мозжечка
- •3.7. Промежуточный мозг
- •3.7.1. Структура промежуточного мозга
- •3.7.2. Морфофункциональная организация таламуса
- •3.7.3. Гипоталамус
- •3.7.4. Роль гипоталамуса в регуляции вегетативных функций
- •3.7.5. Терморегуляционная функция гипоталамуса
- •3.7.6. Участие гипоталамуса в регуляции поведенческих реакций
- •3.7.7. Гипоталамо—гипофизарная система
- •3.8. Лимбическая система
- •3.8.1. Анатомические структуры лимбической системы
- •3.8.2. Функции лимбической системы
- •3.8.3. Роль лимбической системы в формировании эмоций
- •3.9. Базальные ядра и их функции
- •3.10. Кора больших полушарий
- •3.10.1. Морфофункциональная организация коры больших полушарий
- •3.10.2. Проекционные зоны коры
- •3.10.3. Колончатая организация зон коры
- •3.11. Электрические явления в коре головного мозга
- •3.11.1. Электроэнцефалография
- •3.11.2. Метод вызванных потенциалов
- •3.12. Закономерности эволюции коры больших полушарий
- •3.12.1. Происхождение новой коры
- •3.12.2. Организация новой коры у низших млекопитающих
- •3.12.3. Организация новой коры у высших млекопитающих
- •3.12.5. Развитие корковых межнейронных связей
- •3.13. Наследственно закрепленные формы поведения
- •3.13.1. Безусловные рефлексы.
- •3.13.2. Достижения этологов в исследовании врожденных форм поведения
- •3.14. Приобретенные формы поведения
- •3.14.1. Классификация форм научения
- •3.14.2. Сон как форма приобретенного поведения
- •Быстрый сон у животных и человека
- •3.14.3. Закономерности условнорефлекторной деятельности
- •3.14.4. Торможение условных рефлексов
- •3.15. Основные механизмы работы мозга
- •3.15.1. Механизмы формирования условных рефлексов. Теория конвергенции
- •3.15.2. Механизмы условного торможения
- •3.16. Механизмы памяти
- •3.16.1. Кратковременная память
- •3.16.2. Долговременная память
- •3.17. Интегративная деятельность мозга и поведение
- •3.17.1. Доминанта и условный рефлекс
- •3.17.2. Высшие интегративные системы мозга
- •3.17.3. Эволюция ассоциативных систем
- •3.17.4. Эволюция интегративной деятельности мозга
- •3.17.5. Онтогенез ассоциативных систем мозга
- •3.18. Функциональная структура поведенческого акта
- •3.18.1. Основные поведенческие доминанты
- •3.18.2. Ассоциативные системы мозга и структура поведения
- •3.19. Особенности высшей нервной (психической) деятельности человека
- •3.19.1. Физиологические основы психики
- •3.19.2. Сознание и неосознаваемое
- •3.20. Функциональная межполушарная асимметрия
- •Межполушарные различия при зрительном восприятии
- •3.21. Формирование высшей нервной деятельности ребенка
- •3.22. Мышление и речь
- •3.23. Сновидения, гипноз
- •3.24. Трудовая деятельность человека—оператора
- •3.25. Центральная регуляция движений
- •3.25.1. Управление ориентационными движениями и позой
- •3.25.2. Управление локомоцией
- •3.25.3. Организация манипуляторных движений
- •3.25.4. Корковая сенсомоторная интеграция
- •3.25.5. Программирование движений
- •3.25.6. Функциональная структура произвольного движения
- •3.26. Эмоции как компонент целостных поведенческих реакций
- •3.26.1. Биологическая роль эмоций
- •3.26.2. Эмоции и психическая деятельность
- •3.26.3. Вегетативные реакции, сопутствующие эмоциональному состоянию
- •3.26.4. Участие различных структур мозга в формировании эмоциональных состояний
- •3.26.5. Эмоциогенные системы мозга
- •3.26.6. Влияние эмоциональных состояний на научение и память
- •3.26.7. Неврозы
- •3.27. Гематоэнцефалический барьер
- •Рекомендуемая литература
3.11. Электрические явления в коре головного мозга
Электрофизиологические методы нашли широкое применение для изучения функций коры. У человека и других видов позвоночных от поверхности головы можно зарегистрировать спонтанные электрические колебания, обладающие определенной периодичностью. Эти постоянные колебания отражают электрическую активность коры и обозначаются термином электроэнцефалограмма (ЭЭГ).
3.11.1. Электроэнцефалография
Впервые ЭЭГ у животных была зарегистрирована в 1925 г. В. Правдич—Неминским, а у людей — немецким психиатром Г. Бергером в 1929 г.
Для отведения ЭЭГ могут быть использованы два метода: биполярный и монополярный. При биполярном отведении оба отводящих электрода расположены на коже головы, т. е. являются активными и регистрируют разность потенциалов между двумя точками коры. При монополярном отведении один электрод фиксируют на поверхности головы (активный), а второй — на мочке уха, это индифферентный электрод. В условиях клиники расположение электродов при регистрации ЭЭГ стандартизировано и, как правило, включает отведения от лобных долей, двигательной коры, теменных и затылочных долей.
|
Рис. 3.36 Регулярные волны и потенциал (ЭЭГ взрослого человека) А — основные ритмы ЭЭГ: 1 — α—ритм, 2 — β—ритм, 3 — Θ —ритм, 4 — σ—ритм; Б — вызванный потенциал в зрительной области коры на световое раздражение (обозначено стрелкой): 1 — позитивное колебание, 2 — первичное негативное колебание, 3 — вторичные колебания.
|
В острых опытах на животных и при нейрохирургических операциях на человеке ЭЭГ регистрируют непосредственно от поверхности коры — в этом случае ее называют электрокортикограммой (ЭКоГ). Электрокортикограмма имеет более высокую амплитуду и несколько больший частотный спектр быстрых колебаний по сравнению с ЭЭГ, что обусловлено исключением дополнительного электрического сопротивления тканей, расположенных между электродами и поверхностью мозга.
При анализе ЭЭГ с помощью аналоговых или цифровых устройств учитывают частоту, амплитуду, форму и длительность слагающих ее электрических колебаний. По этим параметрам в ЭЭГ человека можно выделить следующие компоненты. У взрослого человека в состоянии покоя и при отсутствии внешних раздражении в ЭЭГ преобладают регулярные волны, которые следуют с частотой 8—13 Гц и имеют амплитуду порядка 50 мкВ. Эти волны обозначаются как α—ритм (рис. 3.36), наиболее выраженный в затылочных долях коры. α—Ритм возможно регистрировать и от других областей коры, в частности от теменной доли, где локализована сенсомоторная кора (роландический ритм).
Переход человека от покоя к деятельности (восприятие зрительных или акустических сигналов, умственная работа и т. д.) сопровождается исчезновением α—ритма и возникновением частых (14—30 Гц) низкоамплитудных (25 мкВ) колебаний β—ритма. Это явление в физиологической литературе определяется как реакция десинхронизации ЭЭГ. Синонимами этого термина могут быть реакция открывания глаз, или реакция активации, характеризующаяся десинхронизирующим, т. е. тормозящим генерацию α—ритма эффектом.
Если человек из состояния покоя переходит не к активной деятельности, а, наоборот, ко сну, то в его ЭЭГ появляются более медленные и высокоамплитудные по сравнению с α—ритмом волны, в частности Θ—ритм (4—7 Гц) и σ—ритм (0,5—3,5 Гц). Амплитуда этих медленных ритмов варьирует от 100 до 300 мкВ. В норме у бодрствующих взрослых людей Θ — и σ—ритм не выявляются. Исключение в данном случае может составлять гиппокампальная кора, где доминирует Θ —ритм при активном состоянии.
Таким образом, анализ частотного спектра ЭЭГ позволяет довольно четко судить о функциональном состоянии коры и не случайно электроэнцефалографию широко используют в клинике. Травмы и патологические процессы в мозгу иногда вызывают специфические изменения ЭЭГ, по которым можно установить локализацию болезненного очага. Так, например, для больных эпилепсией характерно наличие в ЭЭГ судорожных пиковых разрядов и специфических пароксизмальных волн, возникающих в патологической зоне.
Вопрос о генезисе волны ЭЭГ является довольно сложным; вместе с тем можно утверждать, что волны ЭЭГ являются результатом алгебраической суммации постсинаптических потенциалов корковых нейронов. Наиболее эффективная суммация происходит при синхронном возбуждении многих клеток, которое проявляется при ограничении сенсорного притока. Приход сенсорной импульсации в кору (например, при открывании глаз) расстраивает синхронизацию и приводит к смене α—ритма на β—ритм, или к реакции десинхронизации ЭЭГ.
Причиной возникновения синхронных постсинаптических изменений в корковых нейронах могут быть циклические таламокортикальные взаимодействия в которых таламические нейроны играют роль своеобразных ритмоводителей или пейсмекеров. В пользу этой точки зрения свидетельствуют следующие экспериментальные факты. В таламических центрах обнаружена ритмическая активность, частота которой совпадает с α—ритмом. После экспериментального нарушения таламокортикальных связей α—ритм в коре исчезает, а в таламических структурах сохраняется.
Одним из возможных механизмов ритмической активации таламических нейронов считают возвратное самоторможение, создающее периодические колебания возбудимости. Кроме того, на генерацию таламического ритма влияют импульсы, поступающие из ретикулярной формации ствола. Частота этих импульсов зависит от афферентного притока в неспецифическую систему ретикулярной формации, которая может и стимулировать, и тормозить ритмическую активность таламических центров.