
- •3 Физиология нервной системы
- •3.1. Этапы развития нервной системы
- •3.1.1. Нервная система беспозвоночных животных
- •3.1.2. Нервная система позвоночных животных
- •3.2. Общие принципы координационной деятельности центральной нервной системы
- •3.2.1. Интегративная и координационная деятельность нервной клетки
- •3.2.2. Принцип общего конечного пути
- •3.2.3. Временная и пространственная суммация. Окклюзия
- •3.2.4. Торможение
- •3.2.5. Принцип доминанты
- •3.3. Спинной мозг
- •3.3.1. Нейронные структуры и их свойства
- •3.3.2. Рефлекторная функция спинного мозга
- •3.3.3. Проводниковые функции спинного мозга
- •3.4. Продолговатый мозг и мост
- •3.4.1. Строение продолговатого мозга и моста
- •3.4.2. Рефлексы продолговатого мозга
- •3.4.3. Функции ретикулярной формации стволовой части мозга
- •3.5. Средний мозг
- •3.5.1. Морфофункциональная организация среднего мозга
- •3.5.2. Участие среднего мозга в регуляции движений и позного тонуса
- •3.6. Мозжечок
- •3.6.1. Структурная организация и связи мозжечка
- •3.6.2. Функции мозжечка
- •3.7. Промежуточный мозг
- •3.7.1. Структура промежуточного мозга
- •3.7.2. Морфофункциональная организация таламуса
- •3.7.3. Гипоталамус
- •3.7.4. Роль гипоталамуса в регуляции вегетативных функций
- •3.7.5. Терморегуляционная функция гипоталамуса
- •3.7.6. Участие гипоталамуса в регуляции поведенческих реакций
- •3.7.7. Гипоталамо—гипофизарная система
- •3.8. Лимбическая система
- •3.8.1. Анатомические структуры лимбической системы
- •3.8.2. Функции лимбической системы
- •3.8.3. Роль лимбической системы в формировании эмоций
- •3.9. Базальные ядра и их функции
- •3.10. Кора больших полушарий
- •3.10.1. Морфофункциональная организация коры больших полушарий
- •3.10.2. Проекционные зоны коры
- •3.10.3. Колончатая организация зон коры
- •3.11. Электрические явления в коре головного мозга
- •3.11.1. Электроэнцефалография
- •3.11.2. Метод вызванных потенциалов
- •3.12. Закономерности эволюции коры больших полушарий
- •3.12.1. Происхождение новой коры
- •3.12.2. Организация новой коры у низших млекопитающих
- •3.12.3. Организация новой коры у высших млекопитающих
- •3.12.5. Развитие корковых межнейронных связей
- •3.13. Наследственно закрепленные формы поведения
- •3.13.1. Безусловные рефлексы.
- •3.13.2. Достижения этологов в исследовании врожденных форм поведения
- •3.14. Приобретенные формы поведения
- •3.14.1. Классификация форм научения
- •3.14.2. Сон как форма приобретенного поведения
- •Быстрый сон у животных и человека
- •3.14.3. Закономерности условнорефлекторной деятельности
- •3.14.4. Торможение условных рефлексов
- •3.15. Основные механизмы работы мозга
- •3.15.1. Механизмы формирования условных рефлексов. Теория конвергенции
- •3.15.2. Механизмы условного торможения
- •3.16. Механизмы памяти
- •3.16.1. Кратковременная память
- •3.16.2. Долговременная память
- •3.17. Интегративная деятельность мозга и поведение
- •3.17.1. Доминанта и условный рефлекс
- •3.17.2. Высшие интегративные системы мозга
- •3.17.3. Эволюция ассоциативных систем
- •3.17.4. Эволюция интегративной деятельности мозга
- •3.17.5. Онтогенез ассоциативных систем мозга
- •3.18. Функциональная структура поведенческого акта
- •3.18.1. Основные поведенческие доминанты
- •3.18.2. Ассоциативные системы мозга и структура поведения
- •3.19. Особенности высшей нервной (психической) деятельности человека
- •3.19.1. Физиологические основы психики
- •3.19.2. Сознание и неосознаваемое
- •3.20. Функциональная межполушарная асимметрия
- •Межполушарные различия при зрительном восприятии
- •3.21. Формирование высшей нервной деятельности ребенка
- •3.22. Мышление и речь
- •3.23. Сновидения, гипноз
- •3.24. Трудовая деятельность человека—оператора
- •3.25. Центральная регуляция движений
- •3.25.1. Управление ориентационными движениями и позой
- •3.25.2. Управление локомоцией
- •3.25.3. Организация манипуляторных движений
- •3.25.4. Корковая сенсомоторная интеграция
- •3.25.5. Программирование движений
- •3.25.6. Функциональная структура произвольного движения
- •3.26. Эмоции как компонент целостных поведенческих реакций
- •3.26.1. Биологическая роль эмоций
- •3.26.2. Эмоции и психическая деятельность
- •3.26.3. Вегетативные реакции, сопутствующие эмоциональному состоянию
- •3.26.4. Участие различных структур мозга в формировании эмоциональных состояний
- •3.26.5. Эмоциогенные системы мозга
- •3.26.6. Влияние эмоциональных состояний на научение и память
- •3.26.7. Неврозы
- •3.27. Гематоэнцефалический барьер
- •Рекомендуемая литература
3.7.7. Гипоталамо—гипофизарная система
Одной из важнейших функций гипоталамуса является регуляция деятельности гипофиза (см. разд. 6.2). Гипофиз — главная железа внутренней секреции — состоит из передней, задней и промежуточной долей. В процессе эмбриогенеза передняя доля, или аденогипофиз, развивается из выпячивания глотки, а задняя, или нейрогипофиз, формируется из промежуточного мозга. Как передняя, так и задняя доли гипофиза находятся под контролем гипоталамуса, однако механизмы их регуляции различны.
Нейрогипофиз является органом, депонирующим два гормона: антидиуретический (АДГ, вазопрессин) и окситоцин. Как уже упоминалось, местом синтеза этих гормонов являются супраоптическое и паравентрикулярное ядра гипоталамуса. Формируясь в нейросекреторных клетках этих ядер, гормоны в виде гранул транспортируются по их аксонам и после разрушения гранул выделяются в капиллярную сеть нейрогипофиза. Антидиуретический гормон регулирует обратное всасывание воды в почечных канальцах и воздействует на гладкую мускулатуру артериол, повышая таким образом артериальное давление. Окситоцин стимулирует сокращение гладкой мускулатуры матки и молочных желез.
Регуляция секреции обоих гормонов осуществляется по механизму нейрогуморального рефлекса, афферентное звено которого представлено нервными путями от осморецепторов или механорецепторов до гипоталамуса, а эфферентное звено — поступающим в кровяное русло гормоном. Кроме того, регуляция функций молочной железы может осуществляться на первых порах чисто гуморальным путем за счет изменения гормонального фона во время беременности.
Если гормоны задней доли гипофиза продуцируются нейросекреторными клетками гипоталамических ядер, то все гормоны передней доли секретируются клетками самого аденогипофиза. В зависимости от мишеней, на которые направлено их действие, гормоны аденогипофиза подразделяются на гландотропные, влияющие на другие периферические эндокринные железы, и эффекторные, воздействующие непосредственно на ткани. К первой группе относятся кортикотропин (адренокортикотропный гормон, АКТГ) — регулирует секрецию глюкокортикоидов в коре надпочечников; тиреотропный гормон (ТТГ) — стимулирует синтез и секрецию йодсодержащих гормонов щитовидной железы; гонадотропные гормоны — фолликулостимулирующий (ФСГ) и лютеинизирующий (ЛГ) — регулируют деятельность половых желез.
Эффекторные гормоны аденогипофиза представлены соматотропным гормоном (СТГ, гормон роста), регулирующим рост костей, и пролактином, который стимулирует рост молочных желез и секрецию молока. К числу эффекторных гормонов относятся также меланоцитстимулирующий гормон промежуточной доли гипофиза (МСГ, интермедии), являющийся регулятором кожной пигментации.
В 70—е гг. было установлено, что секреторная функция аденогипофиза находится под контролем гипоталамуса. Этот контроль осуществляется нейрогуморальным путем за счет гормонов, выделяемых гипофизотропной зоной гипоталамуса (в медиальном гипоталамусе). Оказалось, что секреция всех известных гормонов аденогипофиза регулируется гипофизотропными гормонами гипоталамуса, которые являются как бы гормонами гормонов. Гипофизотропные гормоны представляют собой пептиды с низкой молекулярной массой (около 4 кДа) и подразделяются на стимулирующие, или так называемые рилизинг—факторы (либерины), и тормозящие секрецию ингибирующие факторы (статины),
Высвобождаясь из нервных окончаний, гипофизотропные гормоны через сосуды гипоталамо—гипофизарной портальной системы попадают в аденогипофиз и там воздействуют на клетки, секретирующие тот или иной тропный гормон. В 1975 г. из гипоталамуса и гипофиза была выделена еще одна группа пептидов — энкефалины и эндорфины, которые оказывают на нервные клетки морфиноподобное действие и, по—видимому, играют существенную роль в регуляции вегетативных процессов и поведения.
Секреция гипофизотропных гормонов гипоталамуса регулируется по принципу отрицательной обратной связи. Установлено, что при повышении содержания в плазме крови гормонов периферических желез внутренней секреции уменьшается поступление соответствущих рилизинг—факторов в портальную гипоталамо—гипофизарную систему и тем самым снижается секреция того или иного тройного гормона аденогипофиза. Параллельно с этим механизмом деятельность гипоталамо—гипофизарной системы может регулироваться и за счет нервных влияний, приходящих от лимбической системы и среднего мозга через латеральный гипоталамус. Так, известно, что при сильных болевых или других стрессорных воздействиях у животных наблюдается усиленное выделение кортикотропина и, наоборот, снижение секреции гонадотропных гормонов. Механизм этой реакции обусловлен изменениями секреции соответствующих рилизинг—факторов, которые вызываются импульсацией, приходящей в гипофизотропную зону гипоталамуса из лимбической коры и среднего мозга. Существует точка зрения, что сигналы от этих центров поступают через дофамин— и норадренергические пути.
Таким образом, за счет нервных влияний секреция аденогипофиза приводится в соответствие с мотивацией и биологической направленностью реакций организма.