
- •3 Физиология нервной системы
- •3.1. Этапы развития нервной системы
- •3.1.1. Нервная система беспозвоночных животных
- •3.1.2. Нервная система позвоночных животных
- •3.2. Общие принципы координационной деятельности центральной нервной системы
- •3.2.1. Интегративная и координационная деятельность нервной клетки
- •3.2.2. Принцип общего конечного пути
- •3.2.3. Временная и пространственная суммация. Окклюзия
- •3.2.4. Торможение
- •3.2.5. Принцип доминанты
- •3.3. Спинной мозг
- •3.3.1. Нейронные структуры и их свойства
- •3.3.2. Рефлекторная функция спинного мозга
- •3.3.3. Проводниковые функции спинного мозга
- •3.4. Продолговатый мозг и мост
- •3.4.1. Строение продолговатого мозга и моста
- •3.4.2. Рефлексы продолговатого мозга
- •3.4.3. Функции ретикулярной формации стволовой части мозга
- •3.5. Средний мозг
- •3.5.1. Морфофункциональная организация среднего мозга
- •3.5.2. Участие среднего мозга в регуляции движений и позного тонуса
- •3.6. Мозжечок
- •3.6.1. Структурная организация и связи мозжечка
- •3.6.2. Функции мозжечка
- •3.7. Промежуточный мозг
- •3.7.1. Структура промежуточного мозга
- •3.7.2. Морфофункциональная организация таламуса
- •3.7.3. Гипоталамус
- •3.7.4. Роль гипоталамуса в регуляции вегетативных функций
- •3.7.5. Терморегуляционная функция гипоталамуса
- •3.7.6. Участие гипоталамуса в регуляции поведенческих реакций
- •3.7.7. Гипоталамо—гипофизарная система
- •3.8. Лимбическая система
- •3.8.1. Анатомические структуры лимбической системы
- •3.8.2. Функции лимбической системы
- •3.8.3. Роль лимбической системы в формировании эмоций
- •3.9. Базальные ядра и их функции
- •3.10. Кора больших полушарий
- •3.10.1. Морфофункциональная организация коры больших полушарий
- •3.10.2. Проекционные зоны коры
- •3.10.3. Колончатая организация зон коры
- •3.11. Электрические явления в коре головного мозга
- •3.11.1. Электроэнцефалография
- •3.11.2. Метод вызванных потенциалов
- •3.12. Закономерности эволюции коры больших полушарий
- •3.12.1. Происхождение новой коры
- •3.12.2. Организация новой коры у низших млекопитающих
- •3.12.3. Организация новой коры у высших млекопитающих
- •3.12.5. Развитие корковых межнейронных связей
- •3.13. Наследственно закрепленные формы поведения
- •3.13.1. Безусловные рефлексы.
- •3.13.2. Достижения этологов в исследовании врожденных форм поведения
- •3.14. Приобретенные формы поведения
- •3.14.1. Классификация форм научения
- •3.14.2. Сон как форма приобретенного поведения
- •Быстрый сон у животных и человека
- •3.14.3. Закономерности условнорефлекторной деятельности
- •3.14.4. Торможение условных рефлексов
- •3.15. Основные механизмы работы мозга
- •3.15.1. Механизмы формирования условных рефлексов. Теория конвергенции
- •3.15.2. Механизмы условного торможения
- •3.16. Механизмы памяти
- •3.16.1. Кратковременная память
- •3.16.2. Долговременная память
- •3.17. Интегративная деятельность мозга и поведение
- •3.17.1. Доминанта и условный рефлекс
- •3.17.2. Высшие интегративные системы мозга
- •3.17.3. Эволюция ассоциативных систем
- •3.17.4. Эволюция интегративной деятельности мозга
- •3.17.5. Онтогенез ассоциативных систем мозга
- •3.18. Функциональная структура поведенческого акта
- •3.18.1. Основные поведенческие доминанты
- •3.18.2. Ассоциативные системы мозга и структура поведения
- •3.19. Особенности высшей нервной (психической) деятельности человека
- •3.19.1. Физиологические основы психики
- •3.19.2. Сознание и неосознаваемое
- •3.20. Функциональная межполушарная асимметрия
- •Межполушарные различия при зрительном восприятии
- •3.21. Формирование высшей нервной деятельности ребенка
- •3.22. Мышление и речь
- •3.23. Сновидения, гипноз
- •3.24. Трудовая деятельность человека—оператора
- •3.25. Центральная регуляция движений
- •3.25.1. Управление ориентационными движениями и позой
- •3.25.2. Управление локомоцией
- •3.25.3. Организация манипуляторных движений
- •3.25.4. Корковая сенсомоторная интеграция
- •3.25.5. Программирование движений
- •3.25.6. Функциональная структура произвольного движения
- •3.26. Эмоции как компонент целостных поведенческих реакций
- •3.26.1. Биологическая роль эмоций
- •3.26.2. Эмоции и психическая деятельность
- •3.26.3. Вегетативные реакции, сопутствующие эмоциональному состоянию
- •3.26.4. Участие различных структур мозга в формировании эмоциональных состояний
- •3.26.5. Эмоциогенные системы мозга
- •3.26.6. Влияние эмоциональных состояний на научение и память
- •3.26.7. Неврозы
- •3.27. Гематоэнцефалический барьер
- •Рекомендуемая литература
3.5. Средний мозг
Средний мозг расположен кпереди от мозжечка и моста в виде толстостенной массы, пронизанной узким центральным каналом (водопровод мозга), соединяющим полость III желудочка мозга (в промежуточном мозгу) с IV желудочком (в продолговатом мозгу). В процессе эмбрионального развития средний мозг формируется из среднего мозгового пузыря, боковые выпячивания которого перемещаются латерально и образуют сетчатку глаза, которая структурно и функционально представляет собой вынесенный на периферию нервный центр среднего мозга.
3.5.1. Морфофункциональная организация среднего мозга
На поперечном срезе (рис. 3.24) дорсальная поверхность среднего мозга занята пластинкой крыши, часто называемой пластинкой четверохолмия, или четверохолмием, состоящей из двух пар возвышений: верхних и нижних. Верхние холмики (двухолмие) играют роль зрительного подкоркового центра и служат местом переключения зрительных путей, идущих к латеральным коленчатым телам промежуточного мозга. У низших позвоночных (рыб и амфибий) ростральные (верхние) холмики достигают очень больших размеров и выполняют роль высшего зрительного центра, так как здесь заканчивается большая часть волокон зрительного тракта.
У птиц и рептилий в среднем мозгу от зрительных путей ответвляются немногочисленные коллатерали, идущие к латеральным коленчатым телам промежуточного мозга. Наконец, у млекопитающих большинство путей зрительного тракта заканчивается на нейронах коленчатых тел и только часть из них заходит в ростральные холмики.
|
Рис. 3.24 Средний мозг А — поперечный разрез; Б—продольный разрез; 1—5 — волокна: 1 — передние корково—мостовые, 2 — корково—ядерные, 3 — латеральные корково—спинномозговые, 4 — передние корково—спинномозговые, 5 — задние корково—мостовые, 6—водопровод среднего мозга, 7 — каудальный холмик, 8 — ретикулярная формация, 9 — медиальная петля, 10— латеральная петля, 11— черное вещество, 12 — красное ядро. |
Нижние (каудальные) холмики (двухолмие) в процессе филогенетического развития формируются у наземных животных (рептилий и птиц) в связи с развитием органа слуха и служат местом переключения слуховых путей, а также афферентных волокон от вестибулярных рецепторов. Каудальные (нижние) холмики выполняют функцию подкоркового слухового центра.
Пластинка крыши и лежащие вентральное клеточные слои вплоть до водопровода среднего мозга формируют так называемую крышу среднего мозга, или тектальную область, которая обладает довольно сложной цитоархитектоникой. Большие нейроны веретенообразной формы расположены здесь слоями, общее число которых достигает 14. Ветвящиеся дендриты и мощные аксоны этих клеток ориентированы в вертикальной плоскости по отношению к поверхности мозга. Аксоны тектальных нейронов идут к ретикулярной формации, к двигательным ядрам стволовой части мозга и в спинной мозг, формируя покрышечно—спинномозговой путь. Таким образом, сама структура крыши среднего мозга создает предпосылку для его участия в анализе сенсорной информации и в регуляции движений.
Данные, полученные при регистрации импульсной активности тектальных нейронов, позволяют дифференцировать их на группы по способности реагировать на различные параметры сенсорных раздражении (смена света и темноты, перемещение светового источника). Эфферентные воздействия тектальных нейронов реализуются в форме ряда жизненно важных безусловных рефлексов. К числу таких рефлексов можно отнести сторожевой рефлекс при внезапной подаче светового или звукового раздражителей — рефлекс, вызывающий усиление тонуса мышц сгибателей. В пластинке крыши осуществляются замыкание ориентировочных, зрительных и слуховых рефлексов (поворот головы к источнику раздражения, рефлекторная установка на звук внешнего уха), оборонительных рефлексов. Все эти автоматические реакции относятся к категории генетически запрограммированных реакций организма, важных для сохранения вида.
В координации движений участвуют и другие структуры среднего мозга. нейтральнее водопровода среднего мозга в виде двух толстых валиков расположены ножки мозга, которые, расходясь кпереди, вступают в полушария конечного мозга. На поперечном срезе ножки мозга разделяются пигментированной прослойкой на две части: покрышку среднего мозга (тегментум) и основание ножек мозга.
Пигментированная прослойка состоит из нейронов, богатых пигментом меланином, и носит название черного вещества (Земмерринга). Это филогенетически древнее образование относится к экстрапирамидной системе регуляции двигательной активности и функционально связано с лежащими в основании полушарий переднего мозга базальными ядрами (ганглиями) — полосатым телом и бледным шаром (см. разд. 3.9).
В 60—е гг. нашего столетия было установлено, что нейроны черного вещества имеют дофаминергическую природу, т. е. способны синтезировать медиатор катехоламинового ряда — дофамин. Аксоны этих нейронов подходят к полосатому телу, также содержащему в значительном количестве дофамин. Дальнейшие исследования показали, что повреждение черного вещества, вызывающее дегенерацию дофаминергических путей к полосатому телу, связано с тяжелым неврологическим заболеванием — дрожательным параличом (болезнью Паркинсона).
Паркинсонизм проявляется в нарушении тонких содружественных движений, функций мимической мускулатуры и в появлении непроизвольных мышечных сокращений, или тремора. Этот болезненный синдром может быть снят при введении L—диоксифениланина — вещества, из которого синтезируется дофамин в организме. Таким образом, восполняя дефицит медиатора, стало возможно купировать неврологическое заболевание и вместе с тем привести фактические доказательства роли черного вещества среднего мозга в сенсомоторной координации движений.
В покрышке среднего мозга залегают различные функционально значимые ядра. Наиболее крупным из них является парное красное ядро (Штиллинга), представляющее собой удлиненное образование, которое расположено между черным веществом и окружающим водопровод среднего мозга центральным серым веществом. Красные ядра являются важным промежуточным центром проводящих путей стволовой части мозга. В них заканчиваются волокна экстрапирамидной системы, идущие от базальных ядер конечного мозга, а также волокна, идущие из мозжечка.
Аксоны крупноклеточной части красного ядра дают начало нисходящему красноядерно—спинномозговому пути (Монакова), заканчивающемуся на мотонейронах передних рогов спинного мозга. Этот тракт является конечным звеном древней экстрапирамидной системы, объединяющей влияния переднего мозга, мозжечка, вестибулярных ядер и координирующей работу двигательного аппарата.
Часть аксонов клеток, локализованных в красном ядре, заканчивается на нейронах ретикулярной формации среднего мозга. Она расположена несколько дорсальное красного ядра и представляет собой продолжение ретикулярной формации заднего мозга. Наряду с активирующей функцией, механизм которой разбирался в предыдущем разделе, ретикулярная формация среднего мозга играет важную роль в регуляции работы глазодвигательного аппарата.
В рефлекторной регуляции глазных движений принимают также участие двигательные ядра глазодвигательного (III пара) и блокового (IV пара) черепных нервов, расположенные в покрышке под дном водопровода среднего мозга. Кпереди от ядра глазодвигательного нерва лежит добавочное ядро глазодвигательного нерва (ядро Даркшевича), от которого начинается медиальный продольный пучок среднего мозга, связывающий между собой ядра глазодвигательного, блокового и находящегося в заднем мозгу отводящего нервов, образуя из них единую функциональную систему, регулирующую сочетанные движения глаз.
Под ядром глазодвигательного нерва лежит непарное вегетативное парасимпатическое ядро глазодвигательного нерва (Якубовича, или Вестфаля—Эдингера), нейроны которого посылают отростки в периферический ресничный ганглий (см. разд. 5.1.2). Постганглионарные нейроны ресничного ганглия иннервируют мышцы радужной оболочки, регулирующей диаметр зрачка, и мышцы ресничного тела, изменяющие кривизну хрусталика. Рефлекторные воздействия нейронов ресничного ганглия находятся в соответствии с деятельностью соматических глазодвигательных ядер. Как правило, кривизна хрусталика изменяется сопряженно с изменением угла сведения глазных осей.
Средний мозг является не только местом замыкания многих жизненно важных рефлексов, но и выполняет существенную проводниковую функцию. Отделенное от покрышки черным веществом основание ножек мозга состоит исключительно из нисходящих путей, соединяющих кору больших полушарий с мостом и спинным мозгом. В их числе находятся оба пирамидных тракта, по которым распространяются прямые влияния коры на мотонейроны спинного мозга.