
- •3 Физиология нервной системы
- •3.1. Этапы развития нервной системы
- •3.1.1. Нервная система беспозвоночных животных
- •3.1.2. Нервная система позвоночных животных
- •3.2. Общие принципы координационной деятельности центральной нервной системы
- •3.2.1. Интегративная и координационная деятельность нервной клетки
- •3.2.2. Принцип общего конечного пути
- •3.2.3. Временная и пространственная суммация. Окклюзия
- •3.2.4. Торможение
- •3.2.5. Принцип доминанты
- •3.3. Спинной мозг
- •3.3.1. Нейронные структуры и их свойства
- •3.3.2. Рефлекторная функция спинного мозга
- •3.3.3. Проводниковые функции спинного мозга
- •3.4. Продолговатый мозг и мост
- •3.4.1. Строение продолговатого мозга и моста
- •3.4.2. Рефлексы продолговатого мозга
- •3.4.3. Функции ретикулярной формации стволовой части мозга
- •3.5. Средний мозг
- •3.5.1. Морфофункциональная организация среднего мозга
- •3.5.2. Участие среднего мозга в регуляции движений и позного тонуса
- •3.6. Мозжечок
- •3.6.1. Структурная организация и связи мозжечка
- •3.6.2. Функции мозжечка
- •3.7. Промежуточный мозг
- •3.7.1. Структура промежуточного мозга
- •3.7.2. Морфофункциональная организация таламуса
- •3.7.3. Гипоталамус
- •3.7.4. Роль гипоталамуса в регуляции вегетативных функций
- •3.7.5. Терморегуляционная функция гипоталамуса
- •3.7.6. Участие гипоталамуса в регуляции поведенческих реакций
- •3.7.7. Гипоталамо—гипофизарная система
- •3.8. Лимбическая система
- •3.8.1. Анатомические структуры лимбической системы
- •3.8.2. Функции лимбической системы
- •3.8.3. Роль лимбической системы в формировании эмоций
- •3.9. Базальные ядра и их функции
- •3.10. Кора больших полушарий
- •3.10.1. Морфофункциональная организация коры больших полушарий
- •3.10.2. Проекционные зоны коры
- •3.10.3. Колончатая организация зон коры
- •3.11. Электрические явления в коре головного мозга
- •3.11.1. Электроэнцефалография
- •3.11.2. Метод вызванных потенциалов
- •3.12. Закономерности эволюции коры больших полушарий
- •3.12.1. Происхождение новой коры
- •3.12.2. Организация новой коры у низших млекопитающих
- •3.12.3. Организация новой коры у высших млекопитающих
- •3.12.5. Развитие корковых межнейронных связей
- •3.13. Наследственно закрепленные формы поведения
- •3.13.1. Безусловные рефлексы.
- •3.13.2. Достижения этологов в исследовании врожденных форм поведения
- •3.14. Приобретенные формы поведения
- •3.14.1. Классификация форм научения
- •3.14.2. Сон как форма приобретенного поведения
- •Быстрый сон у животных и человека
- •3.14.3. Закономерности условнорефлекторной деятельности
- •3.14.4. Торможение условных рефлексов
- •3.15. Основные механизмы работы мозга
- •3.15.1. Механизмы формирования условных рефлексов. Теория конвергенции
- •3.15.2. Механизмы условного торможения
- •3.16. Механизмы памяти
- •3.16.1. Кратковременная память
- •3.16.2. Долговременная память
- •3.17. Интегративная деятельность мозга и поведение
- •3.17.1. Доминанта и условный рефлекс
- •3.17.2. Высшие интегративные системы мозга
- •3.17.3. Эволюция ассоциативных систем
- •3.17.4. Эволюция интегративной деятельности мозга
- •3.17.5. Онтогенез ассоциативных систем мозга
- •3.18. Функциональная структура поведенческого акта
- •3.18.1. Основные поведенческие доминанты
- •3.18.2. Ассоциативные системы мозга и структура поведения
- •3.19. Особенности высшей нервной (психической) деятельности человека
- •3.19.1. Физиологические основы психики
- •3.19.2. Сознание и неосознаваемое
- •3.20. Функциональная межполушарная асимметрия
- •Межполушарные различия при зрительном восприятии
- •3.21. Формирование высшей нервной деятельности ребенка
- •3.22. Мышление и речь
- •3.23. Сновидения, гипноз
- •3.24. Трудовая деятельность человека—оператора
- •3.25. Центральная регуляция движений
- •3.25.1. Управление ориентационными движениями и позой
- •3.25.2. Управление локомоцией
- •3.25.3. Организация манипуляторных движений
- •3.25.4. Корковая сенсомоторная интеграция
- •3.25.5. Программирование движений
- •3.25.6. Функциональная структура произвольного движения
- •3.26. Эмоции как компонент целостных поведенческих реакций
- •3.26.1. Биологическая роль эмоций
- •3.26.2. Эмоции и психическая деятельность
- •3.26.3. Вегетативные реакции, сопутствующие эмоциональному состоянию
- •3.26.4. Участие различных структур мозга в формировании эмоциональных состояний
- •3.26.5. Эмоциогенные системы мозга
- •3.26.6. Влияние эмоциональных состояний на научение и память
- •3.26.7. Неврозы
- •3.27. Гематоэнцефалический барьер
- •Рекомендуемая литература
3.4.2. Рефлексы продолговатого мозга
Продолговатый мозг является жизненно важным отделом нервной системы, где замыкаются дуги целого ряда соматических и вегетативных рефлексов. При участии ядер продолговатого мозга осуществляются цепные рефлексы, связанные с жеванием и проглатыванием пищи. Так, например, при акте жевания координированная деятельность жевательных мышц, языка, щек, нёба и дна полости рта обеспечивается функцией моторных ядер тройничного и подъязычного нервов. Когда пищевой комок касается нёба, основания языка или задней стенки глотки, возникает цепной рефлекс глотания. От рецепторов задней трети языка, слизистой оболочки глотки возбуждение по чувствительным волокнам языкоглоточного нерва поступает в продолговатый мозг к центру глотательного рефлекса. Из этого центра запрограммированные в нервной системе моторные команды по двигательным волокнам подъязычных, тройничных, языкоглоточных и блуждающих нервов идут к мышцам полости рта, глотки, гортани и пищевода. В результате координированной деятельности этих мышц совершается акт глотания с одновременным перекрытием входов в носоглотку и гортань.
С функцией пищеварительного тракта связаны многие вегетативные рефлексы заднего мозга. К их числу относится, например рефлекторная регуляция секреции слюнных желез, которая осуществляется с участием ядер лицевого и языкоглоточного нервов, содержащих парасимпатические нейроны. Вегетативное, парасимпатическое ядро блуждающего нерва включено в систему рефлекторной регуляции дыхания, деятельности сердца и тонуса сосудов.
Целая группа рефлексов заднего мозга направлена на поддержание позного тонуса. В зависимости от источника рецепторных воздействий тонические рефлексы подразделяются на шейные и вестибулярные, или лабиринтные.
Шейные тонические рефлексы запускаются при возбуждении проприоцепторов мышц шеи. Впервые они описаны голландским физиологом Р. Магнусом на кошках с перерезанным на уровне шатра мозжечка стволом мозга (см. разд. 3.5.2). В чистом виде шейные .рефлексы можно наблюдать при разрушении вестибулярного аппарата, дающего дополнительную информацию о положении головы в пространстве. Как показали опыты Р. Магнуса, запрокидывание головы кошки назад в сагиттальной плоскости вызывает возрастание тонуса мышц—разгибателей передних конечностей и одновременно ослабление экстензорного тонуса задних (рис. 3.22). Напротив, наклон головы вниз вызывает обратный процесс, когда тонус разгибателей передних конечностей снижается, а задних — возрастает. Нарушение равновесия за счет поворота головы вправо или влево относительно продольной оси вызывает компенсаторное усиление тонуса разгибателей тех конечностей, в сторону которых повернута голова. Это так называемый рефлекс вращения по Магнусу.
Эффекторным звеном шейных рефлексов могут быть не только мышцы конечностей, но и глазная мускулатура. Рефлекторные влияния на глазные мышцы обеспечивают компенсаторную установку глазных яблок при изменении положения головы. Любое отклонение головы вызывает движение глазных яблок в противоположном направлении, и таким образом рефлекторно сохраняется правильная зрительная ориентация животного.
Все шейные рефлексы являются полисинаптическими. Импульсы от проприоцепторов шейных мышц идут в соответствующие центры продолговатого мозга, а оттуда нисходящие команды поступают или к мотонейронам спинного мозга, или к двигательному ядру отводящего нерва и производят определенное влияние на позный тонус и на глазную мускулатуру.
|
Рис. 3.22 Позные рефлексы децеребрированного животного А — децеребрационная ригидность; Б, В, Г — шейные тонические рефлексы по Магнусу; объяснение см. в тексте. |
Вестибулярные рефлексы неразрывно связаны с шейными тоническими рефлексами и в естественных условиях дополняют их. Вестибулярные рефлексы не зависят от положения головы относительно туловища и в чистом виде могут быть получены при фиксации головы по отношению к туловищу или при выключении проприоцепторов шейных мышц новокаиновой блокадой.
Вестибулярные рефлексы, согласно классификации Магнуса, подразделяются на статические и статокинетические. Статические рефлексы связаны главным образом с возбуждением рецепторов преддверия перепончатого лабиринта и обеспечивают поддержание позы и равновесия тела при самых разнообразных его статических положениях в пространстве. Так, например, если кошку с фиксированной относительно туловища головой поворачивать в пространстве, то в зависимости от положения головы будет наблюдаться различное распределение позного тонуса. В том случае, когда угол между плоскостью горизонта и плоскостью ротовой щели животного составляет 45°, разгибательные мышцы напрягаются максимально. Если же указанный угол равен 135°, наблюдается наименьшее значение тонуса разгибателей.. Между крайними положениями имеется ряд постепенных переходов в степени развития экстензорного тонуса. Это пример тонического вестибулярного рефлекса положения, который осуществляется при участии нейронов латерального вестибулярного ядра (Дейтерса) и идущего от него в спинной мозг преддверно—спинномозгового пути.
К числу статических вестибулярных рефлексов относят рефлексы выпрямления, направленные на переход животного из неестественной позы в обычное для него положение. В качестве наглядного примера можно привести переворачивание кошки в воздухе при падении спиной вниз. За очень короткое время падения животное успевает занять нормальное по отношению к гравитационному полю положение и упасть сразу на все четыре лапы. В процессе переворачивания выпрямительные рефлексы совершаются в определенной последовательности. Сначала за счет вестибулярного выпрямительного рефлекса восстанавливается нормальное положение головы — мордой вниз. Затем изменение положения головы возбуждает проприоцепторы шейных мышц и они запускают шейный выпрямительный рефлекс, в результате которого вслед за головой туловище также возвращается в нормальное положение.
Таким образом, в естественных условиях вестибулярные рефлексы выпрямления дополняются шейными, причем ведущую роль в их осуществлении играет положение головы, где расположены дистантные рецепторы.
Следующая группа вестибулярных рефлексов — статокинетические — характеризуется тем, что она направлена на поддержание позы при изменении скорости движения животного. Эти рефлексы связаны с возбуждением рецепторов полукружных каналов, которое имеет место при наличии в каналах тока эндолимфы. Обычно направленность статокинетического рефлекса зависит от того, какой полукружный канал раздражается при ускорении. Например, при замедлении поступательного движения возбуждаются рецепторы сагиттального канала и, соответственно, рефлекторные изменения мышечного тонуса будут наклонять туловище вперед, как бы сохраняя равномерное движение.
Ускорение при вращении тела в горизонтальной плоскости возбуждает рецепторы горизонтального полукружного канала и вызывает рефлекторную реакцию глазодвигательного аппарата — горизонтальный нистагм. Суть этой реакции состоит в том, что в момент ускорения вращения глаза движутся в сторону, противоположную направлению вращения. Затем, достигнув крайнего отклонения, глаза быстро перемещаются обратно в направлении вращения и таким образом в поле зрения попадает другой участок пространства. Нистагм способствует сохранению нормальной зрительной ориентации и обычно используется в диагностических целях для проверки нормального функционирования вестибулярного аппарата. Плоскость нистагма совпадает с плоскостью ускорения, в связи с чем кроме горизонтального нистагма можно встретить вертикальный, диагональный и круговой нистагмы (см. разд. 4.8.4).
К числу статокинетических вестибулярных рефлексов относятся также и так называемые лифтные рефлексы, которые проявляются в увеличении тонуса мышц разгибателей при линейном ускорении вверх и в повышении тонуса сгибателей при линейном ускорении вниз.