- •Лабораторная работа № 1 определение массовой концентрации тяжелых металлов в воде методом атомно-абсорбционной спектрометрии
- •1. Задачи работы.
- •2. Предварительные сведения.
- •3. Описание экспериментальной установки.
- •4. Порядок выполнения лабораторной работы.
- •4.1. Включение и настройка спектрометра
- •4.2. Ручная градуировка.
- •4.3. Установление точки граница сплайна.
- •5. Методика выполнения измерения массовой концентрации вещества.
- •5.1. Проведение «холостой атомизации».
- •5.2. Выполнение измерений пробы.
- •5.3. Обработка результатов измерений
- •5.4. Оформление результатов измерения
- •6. Содержание отчета
- •7. Контрольные вопросы
- •Лабораторная работа № 2 измерение концентрации компонентов в газовой смеси методом инфракрасной спектрометрии
- •1. Задачи работы
- •2. Предварительные сведения
- •3. Описание экспериментальной установки
- •4. Порядок выполнения работы
- •5. Содержание отчета
- •5. Содержание отчета
- •6. Контрольные вопросы
- •Лабораторная работа №3 измерение концентрации оксида углерода и углеводородов в отработанных газах автомобилей
- •1. Задачи работы
- •2. Предварительные сведения
- •2.1. Характеристика выбросов автотранспорта
- •2.2. Идеальное соотношение горючего и воздуха
- •2.4. Описание экспериментальной установки
- •3. Порядок выполнения работы
- •5. Содержание отчета
- •6. Контрольные вопросы
- •Лабораторная работа № 4 исследование спектров поглощения газов методом инфракрасной фурье спектроскопии
- •4. Порядок выполнения работы
- •4.1. Подготовка Фурье-спектрометра к работе.
- •4.2. Проведение измерений.
- •5. Содержание отчёта
- •6. Контрольные вопросы
- •Лабораторная работа № 5 измерение счётной концентрации аэрозольных частиц методом оптического светорассеяния
- •1. Задачи работы
- •2. Предварительные сведения
- •2. Описание экспериментальной установки
- •3. Порядок выполнения работы
- •Лабораторная работа № 6 измерение озона с помощью ультрафиолетового фотометрического газоанализатора
- •3. Принципиальные измерительные схемы фотометрических газоанализаторов
- •4.Описание ультрафиолетового газоанализатора ф 102-2 и лабораторной установки.
- •5. Описание лабораторной установки
- •6.Порядок выполнения работы.
- •6.1.Подготовка генератора к работе.
- •Измерение концентрации озона в воздухе лаборатории.
- •7. Обработка результатов измерений.
- •8.Содержание отчета
- •9.Контрольные вопросы.
- •Лабораторная работа №7 определение содержания тяжелых металлов в воде методом вольтамперометрии
- •2. Описание экспериментальной установки.
- •3. Порядок выполнения лабораторной работы
- •3.1. Контроль чистоты измерительных ячеек
- •3.2. Определение концентраций элементов по методу добавок
- •3.3. Определение концентрации элементов по методу стандартов
- •Лабораторная работа № 8 измерение концентрации составляющих газовой смеси с помощью квадрупольного масс-спектрометра
- •1. Задачи работы.
- •2. Описание экспериментальной установки
- •2.1. Откачная вакуумная система и система ввода пробы (свп).
- •3. Порядок выполнения работы.
- •Лабораторная работа № 9 измерение влажности воздуха с помощью резистивных датчиков влажности
- •3. Методика выполнения работы
- •4.Содержание отчета
- •Лабораторная работа № 10
- •1. Задачи работы
- •2. Предварительные сведения
- •3. Порядок выполнения работы
- •4. Содержание отчета
- •5. Контрольные вопросы
- •Лабораторная работа № 11 измерение мощности амбиентной дозы гамма-излучения
- •1. Цель работы
- •2. Принцип работы и описание ионизационного дозиметра гамма-излучения
- •2.1 Технические характеристики дозиметров
- •2.2 Объем радиационного контроля
- •3. Измерение мощности амбиентной дозы гамма-излучения
- •Проведение измерений мощности амбиентной дозы гамма-излучения –н*(10) переносным дозиметром дбг-06т.
- •4. Содержание отчета
- •5. Контроль точности результатов дозиметрических измерений
- •Лабораторная работа №12 проведение многократных измерений концентрации составляющих атмосферы с помощью компьютеризированного масс-спектрометра
- •1. Задачи, решаемые при выполнении лабораторной работы
- •2. Краткие сведения о методе масс-спектрометрического анализа.
- •Порядок выполнения работы.
- •Методика обработки результатов прямых многократных измерений.
- •10.Содержание отчета
- •11.Контрольные вопросы
- •Лабораторная работа № 13 поверка газоанализатора
- •1. Задачи работы
- •2. Описание экспериментальной установки
- •3. Поверка газоанализатора
- •4. Методика поверки газоанализаторов
- •5. Содержание отчета
- •6. Контрольные вопросы.
- •Лабораторная работа № 14 поверка радиометров ионизирующих излучений.
- •1. Задачи, решаемые при выполнении работы:
- •2. Предварительные сведения.
- •4. Характеристики дозиметра - радиометра ирд-02б1
- •5. Принцип работы радиометра β - излучения ирд-02б1
- •6. Поверку радиометров проводят в следующей последовательности:
- •7. Общие указания по эксплуатации радиометра β - излучения и порядок выполнения лабораторной работы
- •8. Задание
- •8.1. Операции поверки.
- •8.2. Средства поверки
- •8.3. Условия проведения поверки и подготовка к ней
- •8.5. Оформление результатов поверки
- •8.6. Порядок работы с радиометром ирд-02б1
- •8.7. По результатам измерений оформить:
- •9. Обработка результатов измерений
- •10. Результаты лабораторной работы оформить протоколом измерений
- •11. Требования к отчету:
- •12. Контрольные вопросы:
- •Лабораторная работа №15 разработка государственного стандарта "гси. Газоанализатор оптико-акустичесий. Методика поверки"
- •1. Задачи, решаемые при проведении лабораторной работы
- •2.5. Средства поверки
- •8 Проверка стабильности газоанализатора
- •9. Оформление результатов поверки
- •4. Контрольные вопросы.
- •Лабораторная работа № 16 фотометрический метод измерения компонент в воде с помощью спектрофотометра сф-46
- •1. Задачи работы:
- •2. Описание лабораторной установки
- •3. 2. Принцип действия и устройство спектрофотометра сф-46
- •3.3. Устройство спектрофотометра
- •3.4. Подготовка к работе спектрофотометра
- •Порядок выполнения работы
- •5. Содержание отчета
- •Лабораторная работа № 17 измерение концентрации закиси азота с помощью оптико-акустического газоанализатора
- •1. Задачи работы
- •2. Краткие теоретические сведения
- •3. Описание лабораторной установки
- •4. Порядок выполнения лабораторной работы
- •5. Обработка результатов измерений
- •Лабораторная работа № 18 измерение концентрации озона с помощью хемилюминесцентного газоанализатора
- •3.Описание лабораторной установки.
- •Порядок выполнения работы
- •4.1.Подготовка генератора и озонометра к работе
- •4.2. Калибровка озонометра
- •4.3. Измерение концентрации озоно-воздушной смеси генератора
- •4.4.Подготовить приборы к выключению.
- •4.5. Обработка результатов измерений
- •4.6. Содержание отчета
- •4.7.Контрольные вопросы
- •Литература
- •Приложение обработка результатов измерений в лабораторных работах
- •Методы прямых количественных определений с помощью инструментальных измерений
3. Принципиальные измерительные схемы фотометрических газоанализаторов
Газоанализаторы, реализующие оптико-адсорбционный метод, представляют собой высокочувствительные фотометры с фиксированной рабочей спектральной полосой, соответствующей полосе поглощения определяемого газа.
Фотометры могут быть однолучевыми и двухлучевыми. В силу ряда преимуществ наиболее перспективными являются двухлучевые фотометры
Рис.6.1 Схема двухлучевого фотометра с двумя фотоприемниками.
1 - источник, 2 - .рабочая кювета, 3 - кювета с “нулевым” газом, 4, 5 - приемники оптического излучения, 6 -дифференциальный усилитель-преобразователь, 7 -регистратор.
В двухлучевых фотометрах оптическое излучение от источника 1 (рис.6.1) разделяется на два одинаковых пучка. Один из них проходит через кювету 2 с измеряемым газом, а другой - через такую же кювету 3, заполненную газом, не содержащим измеряемой составляющей - так называемым "нулевым" газом. Затем каждый пучок оптического излучения направляется в отдельный фотоприемник 4 и 5, сигналы от которых поступают на дифференциальный усилитель 6.
В случае слабого поглощения света в измерительной кювете разность между фототоками обоих фотоприемников оказывается пропорциональной концентрации поглощающего свет вещества; для сильного поглощения пропорциональным концентрации (3) будет логарифм отношения сигналов от фотоприемников (2). Для того, чтобы на индикаторе 7 прибора иметь непосредственно значения концентрации определяемого газа, сигналы от обоих каналов должны обрабатываться соответствующим образом, что при современных средствах электроники большой сложности не представляет. В простых стрелочных приборах от функциональной обработки сигналов отказываются, и заменяют ее применением соответствующих нелинейных шкал стрелочных индикаторов концентрации
В двухлучевых схемах оптическое излучение может подвергаться модуляции прерывателем 4 (рис.6.2.) по интенсивности в противофазе один относительно другого, и тогда оба потока направляются на один фотоприемник 4.
Рис.6.2 Схема двухлучевого фотометра. с модулятором
1 - источник, 2 - .рабочая кювета, 3 - кювета с “нулевым” газом, 4 - приемники оптического излучения, 5 - модулятор, 6 - усилитель-преобразователь, 7 -регистратор.
В случае слабого поглощения излучения для модулированных пучков амплитуда переменной составляющей фототока приемника будет пропорциональной концентрации (3); для сильного же поглощения - концентрации пропорционален логарифм отношения максимального и минимального уровня сигнала от фотоприемника за период модуляции.
Для слабого поглощения, как правило, можно пренебречь нелинейной зависимостью фототока приемника от интенсивности падающего на него света, если таковая имеется, т.к. в этом случае полезная составляющая сигнала составит лишь малую долю от фона. Необходимо только, чтобы фотоприемник и первичный усилитель не находились в режиме насыщения. Требование к идентичности характеристик обоих фотоприемников также оказывается не слишком жестким, и разброс в их чувствительности может быть скомпенсирован изменением параметров электрических цепей ( например, ослаблением сигнала от одного из фотоприемников с помощью делителя напряжения), либо оптическим методом - диафрагмированием одного из пучков.
Можно заметить, что сигнал от фотоприемника, воспринимающего поток излучения, прошедший через кювету с "нулевым" газом, зависит только от интенсивности оптического излучения источника, и при неизменном потоке излучения остается постоянным. Тогда весь канал сравнения фотометра может быть заменен источником постоянного напряжения или тока, соответствующего по величине сигналу от фотоприемника, когда измерительная кювета заполнена "нулевым" газом. Это значительно упрощает конструкцию прибора и удешевляет его. Такой фотометр становится однолучевым.
Работа однолучевого газоанализатора строится следующим образом: в его единственную кювету подают "нулевой" газ и усиленный предварительным усилителем сигнал от фотоприемника запоминается; например, устанавливается такая величина опорного напряжения, чтобы индикатор, показывающий концентрацию измеряемого газа, давал ее нулевое значение. После этого через кювету пропускают исследуемый газ и производят измерения. Если поглощение оптического излучения газом мало, то величина полезного сигнала составит лишь малую часть от фона, и даже незначительное изменение потока излучения от источника может сильно исказить результат. В этом случае требования к стабильности параметров источника оптического излучения и фотоприемника оказываются очень высокими, что не всегда может быть выполнено. В результате, эта схема чаще всего применяется для определения газов, имеющих сравнительно высокую концентрацию и поглощение.
