
- •1. Введение в бд
- •2. Теоретические основы бд
- •2.1 Базы данных
- •2.2. Архитектуры обработки информации
- •Ошибка! Ошибка связи.
- •Ошибка! Ошибка связи.
- •2.3 Модели баз данных
- •2.3.1 Иерархическая модель данных
- •Ошибка! Ошибка связи.
- •Ошибка! Ошибка связи.
- •2.3.2 Сетевая модель данных
- •Ошибка! Ошибка связи.
- •2.3.3 Реляционная модель данных
- •3. Реляционный подход к организации бд
- •3.1 Базовые понятия реляционных баз данных
- •Ошибка! Ошибка связи.
- •3.2 Фундаментальные свойства отношений
- •3.3 Взаимосвязь отношений
- •4. Реляционная алгебра
- •4.1 Обзор реляционной алгебры
- •Замкнутость реляционной алгебры
- •Отношения, совместимые по типу
- •4.2 Теоретико-множественные операторы
- •4.3 Специальные реляционные операторы
- •4.4 Зависимые реляционные операторы
- •4.5 Примитивные реляционные операторы
- •4.6 Запросы, невыразимые средствами реляционной алгебры
- •4.7 Кросс-таблицы
- •5. Проектирование бд
- •5.1. Цели и этапы проектирования
- •5.2 Уровни моделирования (проектирования) бд
- •5.3 Критерии оценки качества логической модели данных
- •5.4 Нормализация и ее необходимость
- •5.5 Теория нормализации
- •5.6 Элементы модели "сущность-связь"
- •Основные понятия er-диаграмм
- •Ошибка! Ошибка связи.
- •6. Элементы языка sql
- •6.1 Типы данных
- •6.2 Операторы dml (определения объектов базы данных)
- •6.2.1 Операторы работы с таблицами
- •6.3 Операторы dml (операторы манипулирования данными)
- •6.3.1 Примеры использования операторов манипулирования данными
- •Insert - вставка строк в таблицу
- •6.3.2 Update - обновление строк в таблице
- •6.3.3 Delete - удаление строк в таблице
- •6.3.4 Выбор данных из таблицы select
- •6.3.4.1 Общий синтаксис команды select
- •6.3.4.2 Примеры работы с использованием оператора select
- •Использование агрегатных функций в запросах
- •Использование агрегатных функций с группировками
- •Использование подзапросов
- •Использование объединения, пересечения и разности
- •6.3.4.3 Порядок выполнения оператора select
- •6.3.4.4 Реализация реляционной алгебры средствами оператора select (Реляционная полнота sql)
- •6.4 Объекты и концепции базы данных
- •6.4.1 Таблицы (Tables)
- •6.4.2 Столбцы (Columns)
- •6.4.3 Типы данных (Data types)
- •Тип данных blob
- •6.4.4 Домены (Domains)
- •6.4.5 Справочные ограничения целостности (Referential integrity constraints)
- •6.4.6 Индексы (Indexes)
- •6.4.7 Представления (Views)
- •6.4.8. Хранимые процедуры (Stored procedures)
- •6.4.9 Триггеры (Triggers)
- •6.4.10 Генераторы (Generators)
- •6.4.11 Защита (Security)
- •6.5 Операторы sql для работы с объектами бд
- •6.5.1 Представления
- •6.5.2 Хранимые процедуры
- •6.5.3 Генераторы
- •6.5.4 Триггеры
- •6.5.5 Индексы
- •6.6 Инструкции sql
- •7. Физическая организация и работа субд
- •7.1 Хранение данных
- •Ошибка! Ошибка связи.
Ошибка! Ошибка связи.
Рис. 4.
Здесь Университет является предком для Факультет и Подразделения, а Факультет и Подразделения - потомки Университет. Между типами записи поддерживаются связи.
База данных с такой схемой могла бы выглядеть следующим образом (мы показываем один экземпляр дерева):
Ошибка! Ошибка связи.
Рис. 5.
Все экземпляры данного типа потомка с общим экземпляром типа предка называются близнецами. Для БД определен полный порядок обхода - сверху-вниз, слева-направо.
Манипулирование данными
Примерами типичных операторов манипулирования иерархически организованными данными могут быть следующие:
Найти указанное дерево БД (например, факультет ФИПМ);
Перейти от одного дерева к другому;
Перейти от одной записи к другой внутри дерева (например, от отдела - к первому сотруднику);
Перейти от одной записи к другой в порядке обхода иерархии;
Вставить новую запись в указанную позицию;
Удалить текущую запись.
Основное правило: никакой потомок не может существовать без своего родителя.
Организационные структуры, списки материалов, оглавление в книгах, планы проектов и многие другие совокупности данных м.б. представлены в иерархическом виде.
+ Поддерживается целостность ссылок между предками и потомками. Основное правило: никакой потомок не может существовать без своего родителя, причем потомок может иметь единственного родителя.
– Необходимость использования той иерархии, которая была заложена в основу БД при ее проектировании;
– Заметим, что аналогичное поддержание целостности по ссылкам между записями, не входящими в одну иерархию, не поддерживается.
2.3.2 Сетевая модель данных
Типичным представителем является Integrated Database Management System (IDMS) компании Cullinet Software, Inc., предназначенная для использования на машинах основного класса фирмы IBM под управлением большинства операционных систем. Архитектура системы основана на предложениях Data Base Task Group (DBTG) Комитета по языкам программирования Conference on Data Systems Languages (CODASYL), организации, ответственной за определение языка программирования Кобол. Отчет DBTG был опубликован в 1971 г., а в 70-х годах появилось несколько систем, среди которых IDMS.
Потребность постоянной реорганизации данных (а зачастую в силу особенностей сетевых БД и СУБД невозможности этой реорганизации) привели к созданию сетевой модели данных.
Каждый элемент (потомок) может иметь более одного порождающего элемента (родителя).
Сетевая БД состоит из набора записей и набора связей между этими записями, а если говорить более точно, из набора экземпляров каждого типа из заданного в схеме БД набора типов записи и набора экземпляров каждого типа из заданного набора типов связи.
Тип связи определяется для двух типов записи: предка и потомка. Экземпляр типа связи состоит из одного экземпляра типа записи предка и упорядоченного набора экземпляров типа записи потомка. Для данного типа связи L с типом записи предка P и типом записи потомка C должны выполняться следующие два условия:
Каждый экземпляр типа P является предком только в одном экземпляре L;
Каждый экземпляр C является потомком не более, чем в одном экземпляре L.
На формирование типов связи не накладываются особые ограничения; возможны, например, следующие ситуации:
Тип записи потомка в одном типе связи L1 может быть типом записи предка в другом типе связи L2 (как в иерархии).
Данный тип записи P может быть типом записи предка в любом числе типов связи.
Данный тип записи P может быть типом записи потомка в любом числе типов связи.
Может существовать любое число типов связи с одним и тем же типом записи предка и одним и тем же типом записи потомка; и если L1 и L2 - два типа связи с одним и тем же типом записи предка P и одним и тем же типом записи потомка C, то правила, по которым образуется родство, в разных связях могут различаться.
Типы записи X и Y могут быть предком и потомком в одной связи и потомком и предком - в другой.
Предок и потомок могут быть одного типа записи.
Простой пример сетевой схемы БД: