
- •1. Векторные и скалярные величины в физике. Сложение и умножение векторов.
- •Сложение векторов
- •2. Галилей – основоположник научного подхода к изучению природы.
- •Первый закон Ньютона
- •Второй закон Ньютона
- •Третий закон Ньютона
- •4. Система отсчета. Принцип относительности Галилея. Преобразование Галилея.
- •Вид преобразований при коллинеарных осях[4]
- •Формула преобразования скоростей
- •5. Гравитационное поле. Напряжённость гравитационного поля.
- •6. Масса инертная и гравитационная.
- •Определение
- •8. Векторы моментов силы и момента импульса.
- •9. Уравнение моментов. Закон сохранения момента импульса.
- •Оба эти условия не являются достаточными для покоя.
- •11. Иерархия научных законов. Законы сохранения в механике. Математическая формулировка законов сохранения. Закон Сохранения Импульса
- •Закон Сохранения Механической Энергии
- •12. История развития представлений о Вселенной. Законы Кеплера.
- •Средневековье Европа
- •Первый закон Кеплера (закон эллипсов)
- •Второй закон Кеплера (закон площадей)
- •Третий закон Кеплера (гармонический закон)
- •13. Взаимосвязь между свойствами Вселенной и возможностью появления в ней разумной жизни.
- •15. Понятие пространства. Измерение больших и малых расстояний.
- •16. Детерминизм Лапласа.
- •18. Распределение Максвелла.
- •19. Необратимые и обратимые процессы. Открытые, закрытые и изолированные системы.
- •20. Энтропия в изолированных и не изолированных системах.
- •21. Равновесие в системе, состоящей из большого числа частиц.
- •Для одноатомных газов
- •Для многоатомных газов
- •Для смесей газов
- •Для жидкостей
- •22. Второе начало термодинамики. Термодинамическое определение энтропии.
- •Термодинамическое определение энтропии
- •23. Статистическое определение энтропии, термодинамическая вероятность. Статистическое определение энтропии: принцип Больцмана
- •24. Стрела времени.
- •Ось времени в классической физике
- •Ось времени и теория относительности
- •25. Равновесные, слабо неравновесные и сильно неравновесные процессы.
- •26. Самоорганизация. Порядок через флуктуацию. Диссипативные системы.
- •27. Эффект Бернара как прототип явлений самоорганизации.
- •Основные характеристики
- •Принцип суперпозиции в электродинамике
- •30. Основные законы электростатики, закон Кулона, закон сохранения заряда.
- •Закон сохранения заряда в дифференциальной форме
- •31. Электрическое поле в диэлектриках и проводниках.
- •Основные уравнения и законы
- •Закон Фарадея
- •33. Магнитное поле в веществе. Магнитное поле в веществе
- •34. Движение частиц в электрическом и магнитном полях. Движение заряженных частиц
- •Однородном магнитном поле
- •Движение заряженных частиц
- •Неоднородном магнитном поле
- •Движение заряженных частиц
- •Однородном электрическом поле
- •Движение заряженных частиц
- •Неоднородном электрическом поле
- •35. Электромагнитная индукция. Токи смещения.
- •Закон Фарадея
- •Ток смещения в классической электродинамике
- •36. Теория электромагнитного поля. Уравнение Максвелла.
- •37. Электромагнитные волны.
- •38. Тепловое излучение. Квантовая гипотеза Планка.
- •Основные свойства теплового излучения
- •39. Фотоэффект.
- •Законы внешнего фотоэффекта
- •Внутренний фотоэффект
- •40. Принцип неопределённости.
- •Определение
- •41. Геометрическая оптика. Миражи.
- •Законы геометрической оптики
- •43. Когерентность. Способы получения когерентных пучков.
- •Виды когерентности
- •45. Применение явления интерференции.
- •Физические принципы
- •Источники света
- •Регистрирующие среды
- •47. Давление света.
- •48. Противоречия электродинамики и принципа относительности Галилея.
- •50. Основные постулаты специальной теории относительности.
- •Постулаты Специальной Теории Относительности (сто)
- •2 Рисунок 7.1.2.
- •51. Преобразования Лоренца.
- •Относительность промежутков времени
- •53. Сокращение длины и замедление времени.
- •55. Пространственно-временные графики и понятия «прошлое, настоящее и будущее». Пространственно-временные диаграммы
- •56. Экспериментальные подтверждения кривизны пространства и замедления времени.
- •57. Эквивалентность массы и энергии.
- •Масса покоя как вид энергии
- •Понятие релятивистской массы
- •58. Строение атома. Опыты Резерфорда.
- •Квантовые числа электронов
- •60. Корпускулярно-волновой дуализм.
- •Корпускулярно-волновая двойственность света
- •61. Роль прибора при исследовании микрообъектов.
- •62. Уравнение Шредингера.
- •Общий случай
- •63. Частица в потенциальном «ящике».
- •64. Квантовые числа и периодическая система элементов.
- •65. Радиоактивность. Период полураспада.
- •Виды лучей радиоактивного распада
- •Альфа-распад
- •Бета-распад
- •Гамма-распад (изомерный переход)
- •66. Альфа, бета и гамма распад.
- •67. Открытие нейтрона. Основные свойства нейтронов и протонов:масса, спин и магнитный момент.
- •69. Ядерные силы.
- •70. Ядерные реакции. Типы и классификация.
- •Термоядерный синтез
- •Фотоядерная реакция
- •71. Ядерные реакции под действием нейтронов.
- •По величине спина
- •По видам взаимодействий
- •Составные частицы
- •Фундаментальные (бесструктурные) частицы
- •75. Классификация элементарных частиц.
- •77. Лептоны. Закон сохранения лептонного числа.
- •Свойства
- •Лептонное число
Первый закон Кеплера (закон эллипсов)
Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.
Форма эллипса и
степень его сходства с окружностью
характеризуется отношением
,
где c —
расстояние от центра эллипса до его
фокуса (половина межфокусного
расстояния), a— большая
полуось.
Величина e называется эксцентриситетом эллипса.
При c =
0 и e =
0эллипс
превращается в окружность.
Второй закон Кеплера (закон площадей)
Второй закон Кеплера.
Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади.
Применительное к нашей Солнечной системе, с этим законом связаны два понятия:перигелий — ближайшая к Солнцу точка орбиты, и афелий — наиболее удалённая точка орбиты. Таким образом, из второго закона Кеплера следует, что планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии.
Каждый год в начале января Земля, проходя через перигелий, движется быстрее, поэтому видимое перемещение Солнца по эклиптике к востоку также происходит быстрее, чем в среднем за год. В начале июля Земля, проходя афелий, движется медленнее, поэтому и перемещение Солнца по эклиптике замедляется. Закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.
По определению угловой
момент
точечной
частицы с массой m и
скоростью
записывается
в виде:
.
где
—
радиус-вектор частицы а
—
импульс частицы.
По определению
.
В результате мы имеем
.
Продифференцируем обе части уравнения по времени
поскольку векторное
произведение параллельных векторов
равно нулю. Заметим, что Fвсегда
параллелен r,
поскольку сила радиальная, и p всегда
параллелен v по
определению. Таким образом можно
утверждать, что
—
константа.
Третий закон Кеплера (гармонический закон)
Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей орбит планет. Справедливо не только для планет, но и для их спутников.
,
где T1 и T2 —
периоды обращения двух планет вокруг
Солнца, а a1 и a2 —
длины больших полуосей их орбит.
Ньютон установил,
что гравитационное
притяжение планеты
определенной массы зависит только от
расстояния до неё, а не от других свойств,
таких, как состав или температура. Он
показал также, что третий закон Кеплера
не совсем точен — в действительности
в него входит и масса планеты:
,
где M —
масса Солнца, а m1 и m2 —
массы планет.
Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды.
Второй закон Кеплера утверждает, что радиус-вектор обращающегося тела заметает равные площади за равные промежутки времени. Если теперь мы возьмём очень малые промежутки времени в момент, когда планета находится в точках A и B (перигелий иафелий), то мы сможем аппроксимировать площадь треугольниками с высотами, равными расстоянию от планеты до Солнца, и основанием, равным произведению скорости планеты на время.
Используя закон сохранения энергии для полной энергии планеты в точках A и B, запишем
Теперь, когда мы нашли VB, мы можем найти секториальную скорость. Так как она постоянна, то можем выбрать любую точку эллипса: например, для точки B получим
Однако полная
площадь эллипса равна
(что
равно πab,
поскольку
).
Время полного оборота, таким образом,
равно
Заметим, что если масса m не пренебрежимо мала по сравнению с M, то планета будет обращаться вокруг Солнца с той же скоростью и по той же орбите, что и материальная точка, обращающаяся вокруг массы M + m (см. приведённая масса). При этом массу M в последней формуле нужно заменить на M + m: