
- •1. Векторные и скалярные величины в физике. Сложение и умножение векторов.
- •Сложение векторов
- •2. Галилей – основоположник научного подхода к изучению природы.
- •Первый закон Ньютона
- •Второй закон Ньютона
- •Третий закон Ньютона
- •4. Система отсчета. Принцип относительности Галилея. Преобразование Галилея.
- •Вид преобразований при коллинеарных осях[4]
- •Формула преобразования скоростей
- •5. Гравитационное поле. Напряжённость гравитационного поля.
- •6. Масса инертная и гравитационная.
- •Определение
- •8. Векторы моментов силы и момента импульса.
- •9. Уравнение моментов. Закон сохранения момента импульса.
- •Оба эти условия не являются достаточными для покоя.
- •11. Иерархия научных законов. Законы сохранения в механике. Математическая формулировка законов сохранения. Закон Сохранения Импульса
- •Закон Сохранения Механической Энергии
- •12. История развития представлений о Вселенной. Законы Кеплера.
- •Средневековье Европа
- •Первый закон Кеплера (закон эллипсов)
- •Второй закон Кеплера (закон площадей)
- •Третий закон Кеплера (гармонический закон)
- •13. Взаимосвязь между свойствами Вселенной и возможностью появления в ней разумной жизни.
- •15. Понятие пространства. Измерение больших и малых расстояний.
- •16. Детерминизм Лапласа.
- •18. Распределение Максвелла.
- •19. Необратимые и обратимые процессы. Открытые, закрытые и изолированные системы.
- •20. Энтропия в изолированных и не изолированных системах.
- •21. Равновесие в системе, состоящей из большого числа частиц.
- •Для одноатомных газов
- •Для многоатомных газов
- •Для смесей газов
- •Для жидкостей
- •22. Второе начало термодинамики. Термодинамическое определение энтропии.
- •Термодинамическое определение энтропии
- •23. Статистическое определение энтропии, термодинамическая вероятность. Статистическое определение энтропии: принцип Больцмана
- •24. Стрела времени.
- •Ось времени в классической физике
- •Ось времени и теория относительности
- •25. Равновесные, слабо неравновесные и сильно неравновесные процессы.
- •26. Самоорганизация. Порядок через флуктуацию. Диссипативные системы.
- •27. Эффект Бернара как прототип явлений самоорганизации.
- •Основные характеристики
- •Принцип суперпозиции в электродинамике
- •30. Основные законы электростатики, закон Кулона, закон сохранения заряда.
- •Закон сохранения заряда в дифференциальной форме
- •31. Электрическое поле в диэлектриках и проводниках.
- •Основные уравнения и законы
- •Закон Фарадея
- •33. Магнитное поле в веществе. Магнитное поле в веществе
- •34. Движение частиц в электрическом и магнитном полях. Движение заряженных частиц
- •Однородном магнитном поле
- •Движение заряженных частиц
- •Неоднородном магнитном поле
- •Движение заряженных частиц
- •Однородном электрическом поле
- •Движение заряженных частиц
- •Неоднородном электрическом поле
- •35. Электромагнитная индукция. Токи смещения.
- •Закон Фарадея
- •Ток смещения в классической электродинамике
- •36. Теория электромагнитного поля. Уравнение Максвелла.
- •37. Электромагнитные волны.
- •38. Тепловое излучение. Квантовая гипотеза Планка.
- •Основные свойства теплового излучения
- •39. Фотоэффект.
- •Законы внешнего фотоэффекта
- •Внутренний фотоэффект
- •40. Принцип неопределённости.
- •Определение
- •41. Геометрическая оптика. Миражи.
- •Законы геометрической оптики
- •43. Когерентность. Способы получения когерентных пучков.
- •Виды когерентности
- •45. Применение явления интерференции.
- •Физические принципы
- •Источники света
- •Регистрирующие среды
- •47. Давление света.
- •48. Противоречия электродинамики и принципа относительности Галилея.
- •50. Основные постулаты специальной теории относительности.
- •Постулаты Специальной Теории Относительности (сто)
- •2 Рисунок 7.1.2.
- •51. Преобразования Лоренца.
- •Относительность промежутков времени
- •53. Сокращение длины и замедление времени.
- •55. Пространственно-временные графики и понятия «прошлое, настоящее и будущее». Пространственно-временные диаграммы
- •56. Экспериментальные подтверждения кривизны пространства и замедления времени.
- •57. Эквивалентность массы и энергии.
- •Масса покоя как вид энергии
- •Понятие релятивистской массы
- •58. Строение атома. Опыты Резерфорда.
- •Квантовые числа электронов
- •60. Корпускулярно-волновой дуализм.
- •Корпускулярно-волновая двойственность света
- •61. Роль прибора при исследовании микрообъектов.
- •62. Уравнение Шредингера.
- •Общий случай
- •63. Частица в потенциальном «ящике».
- •64. Квантовые числа и периодическая система элементов.
- •65. Радиоактивность. Период полураспада.
- •Виды лучей радиоактивного распада
- •Альфа-распад
- •Бета-распад
- •Гамма-распад (изомерный переход)
- •66. Альфа, бета и гамма распад.
- •67. Открытие нейтрона. Основные свойства нейтронов и протонов:масса, спин и магнитный момент.
- •69. Ядерные силы.
- •70. Ядерные реакции. Типы и классификация.
- •Термоядерный синтез
- •Фотоядерная реакция
- •71. Ядерные реакции под действием нейтронов.
- •По величине спина
- •По видам взаимодействий
- •Составные частицы
- •Фундаментальные (бесструктурные) частицы
- •75. Классификация элементарных частиц.
- •77. Лептоны. Закон сохранения лептонного числа.
- •Свойства
- •Лептонное число
70. Ядерные реакции. Типы и классификация.
Я́дерная реа́кция — процесс образования новых ядер или частиц при столкновениях ядер или частиц. Впервые ядерную реакцию наблюдал Резерфорд в 1919 году, бомбардируя α-частицамиядра атомов азота, она была зафиксирована по появлению вторичных ионизирующих частиц, имеющих пробег в газе больше пробега α-частиц и идентифицированных как протоны. Впоследствии с помощью камеры Вильсона были получены фотографии этого процесса.
По механизму взаимодействия ядерные реакции делятся на два вида:
реакции с образованием составного ядра, это двухстадийный процесс, протекающий при не очень большой кинетической энергии сталкивающихся частиц (примерно до 10 МэВ).
прямые ядерные реакции, проходящие за ядерное время, необходимое для того, чтобы частица пересекла ядро. Главным образом такой механизм проявляется при очень больших энергиях бомбардирующих частиц.
Если после столкновения сохраняются исходные ядра и частицы и не рождаются новые, то реакция является упругим рассеянием в поле ядерных сил, сопровождается только перераспределением кинетической энергии и импульса частицы и ядра-мишени и называетсяпотенциальным рассеянием
Ядерные взаимодействия с частицами носят весьма разнообразный характер, их виды и вероятности той или иной реакции зависят от вида бомбардирующих частиц, ядер-мишеней, энергий взаимодействующих частиц и ядер и многих других факторов.
Деле́ние ядра́ — процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер — экзотермический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения.
Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии.
Термоядерный синтез
Основная статья: Термоядерная реакция
При нормальной температуре слияние ядер невозможно, так как положительно заряженные ядра испытывают огромные силы кулоновского отталкивания. Для синтеза легких ядер необходимо сблизить их на расстояние порядка 10−15 м, на котором действие ядерных сил притяжения будет превышать кулоновские силы отталкивания. Для того чтобы произошло слияние ядер, необходимо увеличить их подвижность, то есть увеличить их кинетическую энергию. Это достигается повышением температуры. За счет полученной тепловой энергии увеличивается подвижность ядер, и они могут подойти друг к другу на такие близкие расстояния, что под действием ядерных сил сцепления сольются в новое более сложное ядро. В результате слияния легких ядер освобождается большая энергия, так как образовавшееся новое ядро имеет большую удельную энергию связи, чем исходные ядра. Термоядерная реакция — это экзоэнергетическая реакция слияния легких ядер при очень высокой температуре (107 К).
Прежде всего, среди них следует отметить реакцию между двумя изотопами (дейтерий и тритий) весьма распространенного на Земле водорода, в результате которой образуется гелий и выделяется нейтрон. Реакция может быть записана в виде
+
энергия (17,6 МэВ).
Выделенная энергия (возникающая из-за того, что гелий-4 имеет очень сильные ядерные связи) переходит в кинетическую энергию, большую часть из которой, 14,1 МэВ, уносит с собой нейтрон как более лёгкая частица[4]. Образовавшееся ядро прочно связано, поэтому реакция так сильно экзоэнергетична. Эта реакция характеризуется наинизшим кулоновским барьером и большим выходом, поэтому она представляет особый интерес для термоядерного синтеза[1].
Термоядерная реакция используется в термоядерном оружии и находится на стадии исследований для возможного применения вэнергетике, в случае решения проблемы управления термоядерным синтезом.