
- •1. Векторные и скалярные величины в физике. Сложение и умножение векторов.
- •Сложение векторов
- •2. Галилей – основоположник научного подхода к изучению природы.
- •Первый закон Ньютона
- •Второй закон Ньютона
- •Третий закон Ньютона
- •4. Система отсчета. Принцип относительности Галилея. Преобразование Галилея.
- •Вид преобразований при коллинеарных осях[4]
- •Формула преобразования скоростей
- •5. Гравитационное поле. Напряжённость гравитационного поля.
- •6. Масса инертная и гравитационная.
- •Определение
- •8. Векторы моментов силы и момента импульса.
- •9. Уравнение моментов. Закон сохранения момента импульса.
- •Оба эти условия не являются достаточными для покоя.
- •11. Иерархия научных законов. Законы сохранения в механике. Математическая формулировка законов сохранения. Закон Сохранения Импульса
- •Закон Сохранения Механической Энергии
- •12. История развития представлений о Вселенной. Законы Кеплера.
- •Средневековье Европа
- •Первый закон Кеплера (закон эллипсов)
- •Второй закон Кеплера (закон площадей)
- •Третий закон Кеплера (гармонический закон)
- •13. Взаимосвязь между свойствами Вселенной и возможностью появления в ней разумной жизни.
- •15. Понятие пространства. Измерение больших и малых расстояний.
- •16. Детерминизм Лапласа.
- •18. Распределение Максвелла.
- •19. Необратимые и обратимые процессы. Открытые, закрытые и изолированные системы.
- •20. Энтропия в изолированных и не изолированных системах.
- •21. Равновесие в системе, состоящей из большого числа частиц.
- •Для одноатомных газов
- •Для многоатомных газов
- •Для смесей газов
- •Для жидкостей
- •22. Второе начало термодинамики. Термодинамическое определение энтропии.
- •Термодинамическое определение энтропии
- •23. Статистическое определение энтропии, термодинамическая вероятность. Статистическое определение энтропии: принцип Больцмана
- •24. Стрела времени.
- •Ось времени в классической физике
- •Ось времени и теория относительности
- •25. Равновесные, слабо неравновесные и сильно неравновесные процессы.
- •26. Самоорганизация. Порядок через флуктуацию. Диссипативные системы.
- •27. Эффект Бернара как прототип явлений самоорганизации.
- •Основные характеристики
- •Принцип суперпозиции в электродинамике
- •30. Основные законы электростатики, закон Кулона, закон сохранения заряда.
- •Закон сохранения заряда в дифференциальной форме
- •31. Электрическое поле в диэлектриках и проводниках.
- •Основные уравнения и законы
- •Закон Фарадея
- •33. Магнитное поле в веществе. Магнитное поле в веществе
- •34. Движение частиц в электрическом и магнитном полях. Движение заряженных частиц
- •Однородном магнитном поле
- •Движение заряженных частиц
- •Неоднородном магнитном поле
- •Движение заряженных частиц
- •Однородном электрическом поле
- •Движение заряженных частиц
- •Неоднородном электрическом поле
- •35. Электромагнитная индукция. Токи смещения.
- •Закон Фарадея
- •Ток смещения в классической электродинамике
- •36. Теория электромагнитного поля. Уравнение Максвелла.
- •37. Электромагнитные волны.
- •38. Тепловое излучение. Квантовая гипотеза Планка.
- •Основные свойства теплового излучения
- •39. Фотоэффект.
- •Законы внешнего фотоэффекта
- •Внутренний фотоэффект
- •40. Принцип неопределённости.
- •Определение
- •41. Геометрическая оптика. Миражи.
- •Законы геометрической оптики
- •43. Когерентность. Способы получения когерентных пучков.
- •Виды когерентности
- •45. Применение явления интерференции.
- •Физические принципы
- •Источники света
- •Регистрирующие среды
- •47. Давление света.
- •48. Противоречия электродинамики и принципа относительности Галилея.
- •50. Основные постулаты специальной теории относительности.
- •Постулаты Специальной Теории Относительности (сто)
- •2 Рисунок 7.1.2.
- •51. Преобразования Лоренца.
- •Относительность промежутков времени
- •53. Сокращение длины и замедление времени.
- •55. Пространственно-временные графики и понятия «прошлое, настоящее и будущее». Пространственно-временные диаграммы
- •56. Экспериментальные подтверждения кривизны пространства и замедления времени.
- •57. Эквивалентность массы и энергии.
- •Масса покоя как вид энергии
- •Понятие релятивистской массы
- •58. Строение атома. Опыты Резерфорда.
- •Квантовые числа электронов
- •60. Корпускулярно-волновой дуализм.
- •Корпускулярно-волновая двойственность света
- •61. Роль прибора при исследовании микрообъектов.
- •62. Уравнение Шредингера.
- •Общий случай
- •63. Частица в потенциальном «ящике».
- •64. Квантовые числа и периодическая система элементов.
- •65. Радиоактивность. Период полураспада.
- •Виды лучей радиоактивного распада
- •Альфа-распад
- •Бета-распад
- •Гамма-распад (изомерный переход)
- •66. Альфа, бета и гамма распад.
- •67. Открытие нейтрона. Основные свойства нейтронов и протонов:масса, спин и магнитный момент.
- •69. Ядерные силы.
- •70. Ядерные реакции. Типы и классификация.
- •Термоядерный синтез
- •Фотоядерная реакция
- •71. Ядерные реакции под действием нейтронов.
- •По величине спина
- •По видам взаимодействий
- •Составные частицы
- •Фундаментальные (бесструктурные) частицы
- •75. Классификация элементарных частиц.
- •77. Лептоны. Закон сохранения лептонного числа.
- •Свойства
- •Лептонное число
69. Ядерные силы.
ЯДЕРНЫЕ СИЛЫ, силы, удерживающие нуклоны (протоны и нейтроны) в ядре. Ядерные силы действуют только на расстояниях не более 10-13 см, в 100-1000 раз превышают силу взаимодействия электрических зарядов и не зависят от заряда нуклонов.
Сведения о ядерный силах были получены из данных о рассеянии нуклонов на нуклонах, а также из исследований свойств атомных ядер (связанных состояний нуклонов). Само существование атомных ядер заставляет предположить, что в ядерных силах имеется существенное притяжение, которое и обеспечивает энергию связи нуклонов в ядрах порядка нескольких МэВ на нуклон. Кроме того, с увеличением числа нуклонов A в ядре энергия связи на нуклон остается примерно постоянной, а объем ядра растет пропорционально A. Про системы с такими свойствами говорят, что в них имеется насыщение сил, и потому ядерные силы называют насыщающими. Они приводят к возможности существования ядерной материи (Нейтронные звезды), плотность энергии которой не зависит от полного числа нуклонов и составляет примерно 16 МэВ на нуклон (если пренебречь электромагнитными (кулоновским) и гравитационными взаимодействиями). В общем случае можно представить себе, что ядерные силы – это притяжение только между нуклонами — ближайшими соседями, поэтому и энергия связи ядра пропорциональна числу нуклонов в ядре.
Обычно предполагают, что потенциал ядерных сил в произвольной системе нуклонов можно свести к сумме потенциалов парных сил, т.е. сил, действующих между парой нуклонов (влиянием всех остальных нуклонов на данную пару пренебрегают). Хотя кроме парных взаимодействий нуклонов наверняка существуют многочастичные нуклонные взаимодействия, последние проявляются значительно слабее и их пока нельзя однозначно выделить в эксперименте. Поэтому под ядерными силами обычно подразумевают парные ядерные силы.
Совершенно иная ситуация возникает в системе, где преимущественно действуют кулоновские илигравитационные силы. Из-за того, что потенциал этих сил очень медленно спадает с расстояниемr между частицами (как 1/r), во взаимодействии с данной частицей принимают участие не только ближайшие соседи, но и все частицы системы. Поэтому энергия взаимодействия растет гораздо быстрее, чем число частиц, и насыщения сил не возникает. Ненасыщенные свойства гравитационный сил и является причиной гравитационного коллапса массивных звезд.
Ядерные силы описывают при помощи потенциала, который является функцией расстояния r между нуклонами. В отличие от кулоновского и гравитационного потенциалов, обратно пропорциональных расстоянию, ядерный потенциал зависит от r гораздо сложнее. Например, на расстоянии 1 ферми (1 ферми=10 -13 см) ядерное притяжение максимально и превышает кулоновское взаимодействие (потенциал) в несколько десятков раз, а гравитационное — в 10 38 раз, однако с увеличением расстояния до r=6 ферми ядерное притяжение убывает в 200 раз, тогда как кулоновское и гравитационное только в 6 раз.
Из-за такого различия ядерных, кулоновских и гравитационных сил их относительный эффект зависит от полного числа частиц в системе. В ядрах с А ≤300 гравитационные силы несущественны, а кулоновские силы отталкивания пропорциональны квадрату числа протонов (Z2) и уменьшают полную энергию связи примерно на 25% для средних и тяжелых ядер (А ≤300, Z ~ А/2). Кулоновские силы приводят также к спонтанному делению тяжелых ядер, потому что суммарная кулоновская энергия отталкивания в ядрах — продуктах деления — меньше, чем в исходном ядре. Эти же кулоновские силы делают невозможным существование равновесной ядерной материи с примерно одинаковым числом протонов и нейтронов, поскольку энергия связи за счет ядерных сил растет какA, а отталкивание за счет кулоновских сил растет как Z2 ~ A2.
Нейтронная ядерная
материя в отсутствие гравитационных
сил не может существовать, так как, по
теоретическим оценкам, притяжения между
нейтронами чуть-чуть не хватает для
образования связанного состояния. С
ростом числа нуклонов в системе, а
следовательно ее массы, гравитационные
силы становятся все более важными. При
суммарной массе нуклонов, сравнимой с
массой нейтронной звезды (
),
гравитационная энергия превышает 15%
массы покоя всех нуклонов (в энергетическом
выражении); при этом гравитационные
силы создают давление, необходимое для
существования нейтронной материи в
центре нейтронной звезды.
Еще одно свойство потенциала ядерных сил состоит в том, что если кулоновский и гравитационные потенциалы в нерелятивистском приближении зависят только от зарядов и масс частиц соответственно, то потенциал ядерных сил зависит от гораздо большего числа переменных. Определим эти переменные. Нуклоны обладают спином, зарядом Q и движутся относительно друг друга с орбитальным моментом количества движения L. Кроме того, за счет ядерных сил возможен обмен зарядом между протонами p и нейтронами n.
Количество различных членов в потенциале ядерных силах зависит от всех комбинаций переменных, но уменьшается за счет изотопической и вращательной инвариантности потенциала ядерных сил. Согласно изотопической инвариантности, существуют два различных типа ядерного взаимодействия: одно для симметричных по заряду состояний пары нуклонов pp или nn (ему соответствует так называемый изоспинI=0). Согласно вращательной инвариантности, потенциал ядерных сил зависит от ориентации спинов нуклонов относительно друг друга и определенного направления в системе: спины могут быть параллельными или антипараллельными, соответственно суммарный спин S равен единице или нулю.
При S=1 в потенциале ядерных сил имеется зависимость от ориентации спина относительно направления линии, соединяющей нуклоны. Соответствующий член в потенциале ядерных сил называется потенциалом тензорных сил. Кроме того, спин S=1 может быть по-разному ориентирован относительно плоскости орбиты нуклонов. Член в потенциале, содержащий эту зависимость, называют потенциалом спин-орбитальных сил. Таким образом, основные составляющие части потенциала ядерных сил включают четыре типа потенциала центральных сил (то есть зависящих только от r — расстояния между нуклонами, но не от направления их движения): два по значению полного спина и два по значению изоспина. Имеются также два тензорных потенциала (I=0,1) и два спин-орбитальных (I=0,1). Кроме того, потенциал ядерных сил может зависеть от L2 и от P2 — квадрата импульса нуклонов.
Прямое экспериментальное определение парных ядерных сил состоит в опытах по рассеянию нуклонов (протонов или нейтронов) на нуклонной мишени. Для определения зависимости ядерных сил от ориентации спинов требуются опыты с поляризованными нуклонами и поляризованными мишенями. Эти опыты выполнены, и имеются прецизионные данные в интервале энергий до 1000 МэВ (в лабораторной системе отсчета — системе координат, связанной с покоящимся нуклоном).
На основании экспериментальных данных можно утверждать следующее.
1) Все члены в потенциале ядерных сил сравнимы по величине. Главным остается потенциал центральных сил; спин-орбитальные и тензорные силы оказываются меньше, но всего в несколько раз. Для сравнения заметим, что для кулоновских сил в атоме зависящая от спинов часть потенциала составляет около 1% от центральной части (~ Q1Q2/r).
2) Ядерные силы обладают конечным радиусом действия, поэтому их называют короткодействующими по сравнению с кулоновскими или гравитационными.
3) На расстоянии
1-1,5 ферми центральная часть взаимодействия
является притягивающей — глубина
потенциала притяжения (потенциальной
ямы) 30-50 МэВ; однако по законам квантовой
механики энергия связанного состояния
оказывается гораздо меньше (она отличается
от глубины ямы на среднюю кинетическую
энергию, равную примерно
,
где r0 —
ширина ямы притяжения, m —
масса нуклона). Из-за малого радиуса
действия ядерных сил (1,5-2 ферми) притяжение
оказывается достаточным для возникновения
только одного связанного состояния
протона и нейтрона с параллельными
спинами (дейтрон)
с энергией связи 2,2 МэВ. Два нейтрона
(или два протона) вообще не образуют
связанного состояния. Для сравнения
укажем, что в молекуле водорода над
основным состоянием возникает целый
спектр возбужденных колебательных и
вращательных состояний.
Заметим еще, что энергию ядер или ядерной материи нельзя определить как энергию связи пары (2,2 МэВ), умноженную на полное число пар или число возможных связей; правильный расчет гораздо сложнее и, напр., приводит к большой энергии связи среднего по массе ядра, даже когда энергия связи пары равна нулю.
4) При больших энергиях нуклонов в экспериментах по рассеянию частиц (что эквивалентно малым расстояниям, r< 1 ферми) все компоненты ядерных сил дают сильное отталкивание («кор», от английского core — сердцевина). Величина потенциала ядерных сил на достигнутых малых расстояниях составляет около 1000 МэВ=1 ГэВ. Наличие кора оказывается решающим фактором для насыщения ядерных сил. Если бы величина отталкивающей части потенциала в к'оре была всего в три раза меньше, то нуклоны могли бы коллапсировать на один или несколько центров и ядерной материи в обычном понимании не существовало.
Схематическое поведение потенциала центральных сил V r как функции r показано на рис 1. Оно несколько напоминает поведение потенциала двух нейтральных атомов. В качестве иллюстрации приведем аналитическую зависимость от расстояния r для потенциала Рида, характеризующего взаимодействие двух нейтронов в состоянии с орбитальным моментом, равным нулю: