Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
BILET_K_EKZAMENU_PO_FIZIKE.docx
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
1.41 Mб
Скачать

Вид преобразований при коллинеарных осях[4]

Если ИСО S движется относительно ИСО S' с постоянной скоростью   вдоль оси  , а начала координат совпадают в начальный момент времени в обеих системах, то преобразования Галилея имеют вид:

или, используя векторные обозначения,

(последняя формула остается верной для любого направления осей координат).

  • Как видим, это просто формулы для сдвига начала координат, линейно зависящего от времени (подразумеваемого одинаковым для всех систем отсчета).

Из этих преобразований следуют соотношения между скоростями движения точки и её ускорениями в обеих системах отсчета:

  • Преобразования Галилея являются предельным (частным) случаем преобразований Лоренца для малых скоростей   (много меньше скорости света).

Формула преобразования скоростей

Достаточно продифференцировать   в формуле преобразований Галилея, приведенной выше, и сразу же получится приведенная в том же параграфе рядом формула преобразования скорости.

Приведем более элементарный, но и более общий вывод — для случая произвольного движения начала отсчета одной системы относительно другой (при отсутствии вращения). Для такого более общего случая, можно получить формулу преобразования скоростей, например, так.

Рассмотрим преобразование произвольного сдвига начала отсчета на вектор  ,

где радиус-вектор какого-то тела A в системе отсчета K обозначим за  , а в системе отсчета K' — за  ,

подразумевая, как всегда в классической механике, что время t в обеих системах отсчета одно и то же, а все радиус-векторы зависят от этого времени:  .

Тогда в любой момент времени

и в частности, учитывая

,

имеем:

где:

 — средняя скорость тела A относительно системы K;

 — средняя скорость тела А относительно системы K' ;

 — средняя скорость системы K' относительно системы K.

Если   то средние скорости совпадают с мгновенными:

или короче

5. Гравитационное поле. Напряжённость гравитационного поля.

ГРАВИТАЦИОННОЕ ПОЛЕ, пространство вокруг предмета, чья масса способна притягивать другой предмет. Сила этого притяжения, разделенная на массу второго предмета, и есть сила гравитационного поля. Предмет с большой массой, такой как Земля, имеет мощное гравитационное поле, и оказываемое им воздействие называется силой гравитации (или тяготения). Слабая гравитационная сила существует даже между очень маленькими частицами.

Напряжённость гравитацио́нного по́ля — векторная величина, характеризующая гравитационное поле в данной точке и численно равная отношению силы тяготения, действующей на тело, помещённое в данную точку поля, к гравитационной массе этого тела:

Если источником гравитационного поля является некое гравитирующее тело, то согласно закону всемирного тяготения:

 где:

  • G — гравитационная постоянная;

  • MG — гравитационная масса тела-источника поля;

  • R — расстояние от исследуемой точки пространства до центра масс тела-источника поля.

Применяя второй закон Ньютона и принцип эквивалентности гравитационной и инерционной масс:

то есть напряжённость гравитационного поля численно (и по размерности) равна ускорению свободного падения в этом поле.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]