Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
BILET_K_EKZAMENU_PO_FIZIKE.docx
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
1.41 Mб
Скачать

Движение заряженных частиц

в

Однородном электрическом поле

Если частица, обладающая зарядом е, движется в пространстве, где имеется электрическое поле с напряжённостью E то на неё действует сила eE. Если, кроме электрического, имеется магнитное поле, то на частицу действует ещё сила Лоренца, равная e[uB] , где u - скорость движения частицы относительно поля, B - магнитная индукция. Поэтому согласно второму закону Ньютона уравнение движения частиц имеет вид:

 (1)

Написанное векторное уравнение распадается на три скалярных уравнения, каждое из которых описывает движение вдоль соответствующей координатной оси.

В дальнейшем мы будем интересоваться только некоторыми частными случаями движения. Предположим, что заряженные частицы, двигавшиеся первоначально вдоль оси Х со скоростью   попадают в электрическое поле плоского конденсатора.

Если зазор между пластинами мал по сравнению с их длиной, то краевыми эффектами можно пренебречь и считать электрическое поле между пластинами однородным. Направляя ось Y параллельно полю, мы имеем:  . Так как магнитного поля нет, то  . В рассматриваемом случае на заряженные частицы действует только сила со стороны электрического поля, которая при выбранном направлении координатных осей целиком направлена по оси Y. Поэтому траектория движения частиц лежит в плоскости XY и уравнения движения принимают вид:

Движение частиц в этом случае происходит под действием постоянной силы и подобно движению горизонтально брошенного тела в поле тяжести. Поэтому ясно без дальнейших расчетов, что частицы будут двигаться по параболам.

Вычислим угол   , на который отклонится пучок частиц после прохождения через конденсатор. Интегрируя первое из уравнений (3.2), находим:

Интеграция второго уравнения даёт:

Так как при t=0 (момент вступления частицы в конденсатор) u(y)=0, то c=0, и поэтому

Отсюда получаем для угла отклонения:

Мы видим, что отклонение пучка существенно зависит от величины удельного заряда частиц e/m.

Движение заряженных частиц

в

Неоднородном электрическом поле

Рассмотрим принцип устройства электрических линз, в которых движение электронов изменяется электрическим полем. Линза состоит из двух отделенных узкой щелью коаксиальных цилиндров, к которым приложена разность потенциалов. Напряженность электрического поля перпендикулярна к эквипотенциальным поверхностям и имеет составляющую параллельную оси линзы, и составляющую, перпендикулярную к оси. Электроны, вышедшие из некоторой точки P и вступившие в линзу, в левой половине электрического поля отклоняются полем, к оси линзы, и поэтому расходящийся пучок превращается в сходящийся. В правой половине поля направление Er , изменяется на противоположное и на электроны действует сила, направленная от оси наружу. Однако, электроны, достигнув центральной плоскости (щели), прошли ускоряющую разность потенциалов u/2 (u - разность потенциалов между цилиндрами) и увеличили свою скорость. Поэтому электронный пучок во второй части линзы, хотя и уменьшает свою сходимость, остается все же сходящимся и пересекает ось в некоторой точке P1 которая и является изображением точки P .

Для электрической линзы, так же как и для оптической, существует определенная точка F1 на оси линзы, которая отличается тем, что расходящийся электронный пучок, выходящий из этой точки, после преломления в линзе превращается в параллельный. Эта точка называется главным фокусом линзы, а её расстояние от центра линзы (центра щели) — главным фокусным расстоянием. С другой стороны линзы расположен её второй главный фокус. Легко сообразить, что для рассматриваемой электрической линзы оба фокусных расстояния неодинаковы.

На рисунке изображена электрическая линза, для которой оба фокусных расстояния одинаковы. Она состоит из двух диафрагм Д1 и Д2, соединенных вместе и находящихся при одинаковом потенциале и третьей диафрагмы Д3 помещенной между ними. Если внутренняя диафрагма имеет отрицательный потенциал относительно крайних диафрагм, то линза является для электронов собирательной.

Так как потенциал пространства слева и справа от рассматриваемой линзы одинаков, то она соответствует оптической линзе, с обеих сторон которой находится одна и та же среда. Линзам для электронов, так же как и оптическим линзам, присущи различные ошибки или аберрации, которые не позволяют получить абсолютно резкое изображение. Эти аберрации можно лишь уменьшить, но не устранить вовсе.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]