
- •1. Векторные и скалярные величины в физике. Сложение и умножение векторов.
- •Сложение векторов
- •2. Галилей – основоположник научного подхода к изучению природы.
- •Первый закон Ньютона
- •Второй закон Ньютона
- •Третий закон Ньютона
- •4. Система отсчета. Принцип относительности Галилея. Преобразование Галилея.
- •Вид преобразований при коллинеарных осях[4]
- •Формула преобразования скоростей
- •5. Гравитационное поле. Напряжённость гравитационного поля.
- •6. Масса инертная и гравитационная.
- •Определение
- •8. Векторы моментов силы и момента импульса.
- •9. Уравнение моментов. Закон сохранения момента импульса.
- •Оба эти условия не являются достаточными для покоя.
- •11. Иерархия научных законов. Законы сохранения в механике. Математическая формулировка законов сохранения. Закон Сохранения Импульса
- •Закон Сохранения Механической Энергии
- •12. История развития представлений о Вселенной. Законы Кеплера.
- •Средневековье Европа
- •Первый закон Кеплера (закон эллипсов)
- •Второй закон Кеплера (закон площадей)
- •Третий закон Кеплера (гармонический закон)
- •13. Взаимосвязь между свойствами Вселенной и возможностью появления в ней разумной жизни.
- •15. Понятие пространства. Измерение больших и малых расстояний.
- •16. Детерминизм Лапласа.
- •18. Распределение Максвелла.
- •19. Необратимые и обратимые процессы. Открытые, закрытые и изолированные системы.
- •20. Энтропия в изолированных и не изолированных системах.
- •21. Равновесие в системе, состоящей из большого числа частиц.
- •Для одноатомных газов
- •Для многоатомных газов
- •Для смесей газов
- •Для жидкостей
- •22. Второе начало термодинамики. Термодинамическое определение энтропии.
- •Термодинамическое определение энтропии
- •23. Статистическое определение энтропии, термодинамическая вероятность. Статистическое определение энтропии: принцип Больцмана
- •24. Стрела времени.
- •Ось времени в классической физике
- •Ось времени и теория относительности
- •25. Равновесные, слабо неравновесные и сильно неравновесные процессы.
- •26. Самоорганизация. Порядок через флуктуацию. Диссипативные системы.
- •27. Эффект Бернара как прототип явлений самоорганизации.
- •Основные характеристики
- •Принцип суперпозиции в электродинамике
- •30. Основные законы электростатики, закон Кулона, закон сохранения заряда.
- •Закон сохранения заряда в дифференциальной форме
- •31. Электрическое поле в диэлектриках и проводниках.
- •Основные уравнения и законы
- •Закон Фарадея
- •33. Магнитное поле в веществе. Магнитное поле в веществе
- •34. Движение частиц в электрическом и магнитном полях. Движение заряженных частиц
- •Однородном магнитном поле
- •Движение заряженных частиц
- •Неоднородном магнитном поле
- •Движение заряженных частиц
- •Однородном электрическом поле
- •Движение заряженных частиц
- •Неоднородном электрическом поле
- •35. Электромагнитная индукция. Токи смещения.
- •Закон Фарадея
- •Ток смещения в классической электродинамике
- •36. Теория электромагнитного поля. Уравнение Максвелла.
- •37. Электромагнитные волны.
- •38. Тепловое излучение. Квантовая гипотеза Планка.
- •Основные свойства теплового излучения
- •39. Фотоэффект.
- •Законы внешнего фотоэффекта
- •Внутренний фотоэффект
- •40. Принцип неопределённости.
- •Определение
- •41. Геометрическая оптика. Миражи.
- •Законы геометрической оптики
- •43. Когерентность. Способы получения когерентных пучков.
- •Виды когерентности
- •45. Применение явления интерференции.
- •Физические принципы
- •Источники света
- •Регистрирующие среды
- •47. Давление света.
- •48. Противоречия электродинамики и принципа относительности Галилея.
- •50. Основные постулаты специальной теории относительности.
- •Постулаты Специальной Теории Относительности (сто)
- •2 Рисунок 7.1.2.
- •51. Преобразования Лоренца.
- •Относительность промежутков времени
- •53. Сокращение длины и замедление времени.
- •55. Пространственно-временные графики и понятия «прошлое, настоящее и будущее». Пространственно-временные диаграммы
- •56. Экспериментальные подтверждения кривизны пространства и замедления времени.
- •57. Эквивалентность массы и энергии.
- •Масса покоя как вид энергии
- •Понятие релятивистской массы
- •58. Строение атома. Опыты Резерфорда.
- •Квантовые числа электронов
- •60. Корпускулярно-волновой дуализм.
- •Корпускулярно-волновая двойственность света
- •61. Роль прибора при исследовании микрообъектов.
- •62. Уравнение Шредингера.
- •Общий случай
- •63. Частица в потенциальном «ящике».
- •64. Квантовые числа и периодическая система элементов.
- •65. Радиоактивность. Период полураспада.
- •Виды лучей радиоактивного распада
- •Альфа-распад
- •Бета-распад
- •Гамма-распад (изомерный переход)
- •66. Альфа, бета и гамма распад.
- •67. Открытие нейтрона. Основные свойства нейтронов и протонов:масса, спин и магнитный момент.
- •69. Ядерные силы.
- •70. Ядерные реакции. Типы и классификация.
- •Термоядерный синтез
- •Фотоядерная реакция
- •71. Ядерные реакции под действием нейтронов.
- •По величине спина
- •По видам взаимодействий
- •Составные частицы
- •Фундаментальные (бесструктурные) частицы
- •75. Классификация элементарных частиц.
- •77. Лептоны. Закон сохранения лептонного числа.
- •Свойства
- •Лептонное число
Первый закон Ньютона
Первый закон Ньютона постулирует наличие такого явления, как инерция тел. Поэтому он также известен как Закон инерции. Инерция — это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения, на тело необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают инертностью. Инертность — это свойство тел сопротивляться изменению их текущего состояния. Величина инертности характеризуется массой тела.
Существуют такие системы отсчёта, называемые инерциальными, относительно которых свободная материальная точка сохраняет величину и направление своей скорости неограниченно долго.
Второй закон Ньютона
Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).
В инерциальной системе отсчета ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.
В инерциальной системе отсчета скорость изменения импульса материальной точки равна равнодействующей всех приложенных к ней сил.
Когда на тело действуют несколько сил, с учётом принципа суперпозиции (результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.) второй закон Ньютона записывается:
или
Третий закон Ньютона
Этот закон объясняет,
что происходит с двумя взаимодействующими
телами. Возьмём для примера замкнутую
систему, состоящую из двух тел. Первое
тело может действовать на второе с
некоторой силой
,
а второе — на первое с силой
.
Как соотносятся силы? Третий закон
Ньютона утверждает: сила действия равна
по модулю и противоположна по направлению
силе противодействия. Подчеркнём, что
эти силы приложены к разным телам, а
потому вовсе не компенсируются.
Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:
4. Система отсчета. Принцип относительности Галилея. Преобразование Галилея.
Система отсчёта — это совокупность тела отсчёта, системы координат и системы отсчёта времени, связанных с этим телом, по отношению к которому изучается движение (или равновесие) каких-либо других материальных точек или тел.
Иным образом этот принцип формулируется (следуя Галилею) так: если в двух замкнутых лабораториях, одна из которых равномерно прямолинейно (и поступательно) движется относительно другой, провести одинаковый механический эксперимент, результат будет одинаковым.
Преобразова́ния Галиле́я — в классической механике (механике Ньютона) преобразования координат и времени при переходе от одной инерциальной системы отсчета (ИСО) к другой[1]. Термин был предложен Филиппом Франком в 1909 году.[2] Преобразования Галилея подразумевают одинаковость времени во всех системах отсчета («абсолютное время»[3]) и выполнение принципа относительности.
При́нцип относи́тельности — фундаментальный физический принцип, согласно которому все физические процессы винерциальных системах отсчёта протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения.