
- •А.А.Ивин логика
- •Издание 2-е Москва Издательство «Знание» 1998
- •Глава 2. 19
- •Глава 3. 121
- •Глава 4. 373
- •Глава 5. 573
- •Глава 6. 775
- •Глава 7. 1377
- •Глава 8. 1569
- •Содержание
- •§ 1. Законы противоречия ... 13—21.
- •§ 2. Закон исключительного третьего ... 21—26.
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •Предисловие
- •Глава 1 Кто мыслит логично § 1. Интуитивная логика
- •Принудительная сила речи
- •Мнимая убедительность
- •Слабость интуитивной логики.
- •§ 2. Задачи логики
- •Из истории логики
- •Правильное рассуждение
- •Логика и творчество
- •Глава 2 Законы логики § 1. Закон противоречия
- •Формулировка закона противоречия
- •Мнимые противоречия
- •Противоречие «смерти подобно...»
- •Неявные противоречия
- •Многообразные задачи протмворечия
- •§ 2. Закон исключенного третьего
- •Некоторые применения закона
- •Сомнения в универсальности закона
- •Критика закона Брауэром
- •§ 3. Еще законы
- •Закон тождества
- •Закон контрапозиции
- •Законы де Моргана
- •Модус поненс и модус толленс
- •Утверждающе-отрицающий и отрицающе-утверждающий модусы
- •Конструктивная и деструктивная дилеммы
- •Закон Клавия
- •§ 4. О так называемых «основных» законах логики
- •Трактовка логических законов в традиционной логике
- •Законы логики как элементы логической системы
- •§ 5. Логические тавтологии
- •Ошибочные истолкования логических тавтологий
- •Глава 3 Неклассическая логика § 1. Классическое и неклассическое в логике
- •Из истории неклассической логики
- •§ 2. Интуиционистская и многозначная логика
- •Основные идеи интуиционизма
- •Многозначная логика
- •§ 3. Модальная логика
- •Модальные понятия
- •Абсолютные и сравнительные модальности
- •Единство модальной логики
- •§ 4. Логика оценок и логика норм
- •Возможность научной этики
- •Законы логики оценок
- •Законы логики норм
- •§ 5. Другие разделы неклассической логики
- •Логика квантовой механики
- •Паранепротиворечивая логика
- •Логика причинности
- •Логика изменения
- •Единство логики
- •Задачи определения
- •§ 2. Неявные определения
- •Контекстуальные определения
- •Остенсивные определения
- •Аксиоматические определения
- •§ 3. Явные определения
- •Требования к явному определению
- •§ 4. Реальные и номинальные определения
- •Определения-описания и определения-требования
- •§ 5. Споры об определениях
- •Границы эффективных определений
- •Ясность системы понятий
- •Глава 5 Искусство классификации § 1. Операция деления
- •Пример сумбурной классификации
- •Деление понятий
- •Требования к делению
- •§ 2. Основание деления
- •Характерная ошибка
- •Дихотомическое деление
- •§ 3. Естественная классификация
- •Естественная и искусственная классификация
- •Человек как объект классификации
- •Еще примеры классификации
- •Ловушки классификации
- •Глава 6 Индуктивные рассуждения § 1.Дедукция и индукция
- •Определения дедукции и индукции
- •Обычные дедукции
- •Дедуктивная аргументация
- •Понятие доказательства
- •§ 2. Разновидности индукции
- •Неполная индукция
- •«Перевернутые законы логики»
- •Косвенное подтверждение
- •Целевое обоснование
- •Факты как примеры
- •Факты как иллюстрации
- •Образцы и оценки
- •§ 3. Аналогия
- •Свернутые аналогий
- •Аналогия свойств и аналогия отношений
- •Аналогия как сходство несходного
- •Вероятность выводов по аналогии
- •Аналогия в искусстве
- •Аналогия в науке и технике
- •Аналогия в историческом исследовании
- •Характерные ошибки
- •Гадания и прорицания как аналогии
- •Глава 7 Софизмы § 1. Софизм — интеллектуальное мошенничество?
- •Софизм как умышленный обман
- •Недостатки стандартного истолкования софизмов
- •§ 2. Апории Зенона
- •«Ахиллес и черепаха», «Дихотомия»
- •Апория «Meдимн зерна»
- •«Неопредмеченное знание»
- •Софизмы и развитие знания
- •§ 3. Софизмы и зарождение логики
- •Софизмы и логический анализ языка
- •Софизмы и противоречивое мышление
- •Софизмы как особая форма постановки проблем
- •Глава 8 Логические парадоксы § 1. "Король логических парадоксов"
- •Парадоксы и логика
- •Варианты парадокса «Лжеца»
- •Язык и метаязык
- •Другие решения парадокса
- •§ 2. Парадокс Рассела
- •Множество обычных множеств
- •Другие варианты парадокса
- •§ 3. Парадоксы Греллинга и Берри
- •Аутологические и гетерологические слова
- •§ 4. Неразрешимый спор
- •Решения парадокса "Протагор и Еватл"
- •Правила, заводящие в тупик
- •Парадокс «Крокодил и мать»
- •Парадокс Санчо Пансы
- •§ 5. Другие парадоксы
- •Парадоксы неточных понятий
- •Парадоксы индуктивной логики
- •§ 6. Что такое логический парадокс
- •Своеобразие логических парадоксов
- •Парадоксы и современная логика
- •Устранение и объяснение парадоксов
- •Логическая грамматика
- •Будущее парадоксов
- •§ 7. Несколько парадоксов, или то, что похоже на них
- •Вместо заключения
- •Содержание
- •§ 1. Законы противоречия ... 13—21.
- •§ 2. Закон исключительного третьего ... 21—26.
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
Парадоксы индуктивной логики
Нет, пожалуй, такого раздела логики, в котором не было бы своих собственных парадоксов.
В индуктивной логике есть свои парадоксы, с которыми активно, но пока без особого успеха борются уже почти полвека. Особенно интересен парадокс подтверждения, открытый американским философом К.Гемпелем. Естественно считать, что общие положения, в частности научные законы, подтверждаются своими положительными примерами. Если рассматривается, скажем, высказывание «Все А есть В», то положительными его примерами будут объекты, обладающие свойствами А и В. В частности, подтверждающие примеры для высказывания «Все вороны черные» — это объекты, являющиеся и воронами, и черными. Данное высказывание равносильно, однако, высказыванию «Все предметы, не являющиеся черными, не вороны», и подтверждение последнего должно быть также подтверждением первого. Но «Все не черное не ворона» подтверждается каждым случаем не черного предмета,
211
не являющегося вороной. Выходит, таким образом, что наблюдения «Корова белая», «Ботинки коричневые» и т.п. подтверждают высказывание «Все вороны черные».
Из невинных, казалось бы, посылок вытекает неожиданный парадоксальный результат.
В логике норм беспокойство вызывает целый ряд ее законов. Когда они формулируются в содержательных терминах, несоответствие их обычным представлениям о должном и запрещенном становится очевидным. Например, один из законов говорит, что из распоряжения «Отправьте письмо!» вытекает распоряжение «Отправьте письмо или сожгите его!».
Другой закон утверждает, что, если человек нарушил одну из своих обязанностей, он получает право делать все, что угодно. С такого рода «законами долженствования» наша логическая интуиция никак не хочет мириться.
В логике знания усиленно обсуждается парадокс логического всеведения. Он утверждает, что человек знает все логические следствия, вытекающие из принимаемых им положений. Например, если человеку известны пять постулатов геометрии Евклида, то, значит, он знает и всю эту геометрию, поскольку она вытекает из них. Но это не так. Человек может соглашаться с постулатами и вместе с тем не уметь доказать теорему Пифагора и потому сомневаться, что она вообще верна.
§ 6. Что такое логический парадокс
Никакого исчерпывающего перечня логических парадоксов не существует, да он и невозможен.
Рассмотренные парадоксы — это только часть из всех обнаруженных к настоящему времени. Вполне вероятно, что в будущем откроют и многие другие парадоксы, и даже совершенно новые их типы. Само понятие парадокса не является настолько определенным, чтобы удалось составить список хотя бы уже известных парадоксов.
«Теоретико-множественные парадоксы являются очень серьезной проблемой, не для математики, однако, а скорее для логики и теории познания», — пишет австрийский математик и логик К.Гедель. «Логика непротиворечива. Не существует никаких логических парадоксов», — утверждает математик Д.Бочвар. Такого рода расхождения иногда существенны, иногда словесны. Дело во многом в том, что именно понимается под логическим парадоксом.
212
Своеобразие логических парадоксов
Необходимым признаком логических парадоксов считается логический словарь.
Парадоксы, относимые к логическим, должны быть сформулированы в логических терминах. Однако в логике нет четких критериев деления терминов на логические и нелогические. Логика, занимающаяся правильностью рассуждений, стремится свести понятия, от которых зависит правильность практически применяемых выводов, к минимуму. Но этот минимум не предопределен однозначно. Кроме того, в логических терминах можно сформулировать и нелогические утверждения. Использует ли конкретный парадокс только чисто логические посылки, далеко не всегда удается определить однозначно.
Логические парадоксы не отделяются жестко от всех иных парадоксов, подобно тому как последние не отграничиваются ясно от всего непарадоксального и согласующегося с господствующими представлениями.
На первых порах изучения логических парадоксов казалось, что их можно выделить по нарушению некоторого, еще не исследованного положения или правила логики. Особенно активно претендовал на роль такого правила введенный Б.Расселом принцип порочного круга. Этот принцип утверждает, что совокупность объектов не может содержать членов, определимых только посредством этой же совокупности.
Все парадоксы имеют одно общее свойство — самоприменимость, или циркулярность. В каждом из них объект, о котором идет речь, характеризуется посредством некоторой совокупности объектов, к которой он сам принадлежит. Если мы выделяем, например, самого хитрого человека, мы делаем это при помощи совокупности людей, к которой относится и данный человек. И если мы говорим: «Это высказывание ложно», мы характеризуем интересующее нас высказывание путем ссылки на включающую его совокупность всех ложных высказываний.
Во всех парадоксах имеет место самоприменимость понятий, а значит, есть как бы движение по кругу, приводящее в конце концов к исходному пункту. Стремясь охарактеризовать интересующий нас объект, мы обращаемся к той совокупности объектов, которая включает его. Однако оказывается, что сама она для своей определенности нуждается в рассматриваемом объекте и не может быть ясным образом понята без него. В этом круге, возможно, и кроется источник парадоксов.
Ситуация осложняется, однако, тем, что такой круг имеется во многих совершенно непарадоксальных рас-
213
суждениях. Циркулярным является огромное множество самых обычных, безвредных и вместе с тем удобных способов выражения. Такие примеры, как «самый большой из всех городов», «наименьшее из всех натуральных чисел», «один из электронов атома железа» и т.п., показывают, что далеко не всякий случай самоприменимости ведет к противоречию и что она важна не только в обычном языке, но и в языке науки.
Простая ссылка на использование самоприменяемых понятий недостаточна, таким образом, для дискредитации парадоксов. Необходим еще какой-то дополнительный критерий, отделяющий самоприменимость, ведущую к парадоксу, от всех иных ее случаев.
Было много предложений на этот счет, но удачного уточнения циркулярности так и не было найдено. Невозможным оказалось охарактеризовать циркулярность таким образом, чтобы каждое циркулярное рассуждение вело к парадоксу, а каждый парадокс был итогом некоторого циркулярного рассуждения.
Попытка найти какой-то специфический принцип логики, нарушение которого было бы отличительной особенностью всех логических парадоксов, ни к чему определенному не привела.
Несомненно полезной была бы какая-то классификация парадоксов, подразделяющая их на типы и виды, группирующая одни парадоксы и противопоставляющая их другим. Однако и в этом деле ничего устойчивого не было достигнуто.
Английский логик Ф.Рамсей, умерший в 1930 г., когда ему еще не исполнилось и двадцати семи лет, предложил разделить все парадоксы на синтаксические и семантические. К первым относится, например, парадокс Рассела, ко вторым — парадоксы «Лжеца», Греллинга и др.
По мнению Рамсея, парадоксы первой группы содержат только понятия, принадлежащие логике или математике. Вторые включают такие понятия, как «истина», «определимость», «именование», «язык», не являющиеся строго математическими, а относящиеся скорее к лингвистике или даже теории познания. Семантические парадоксы обязаны, как кажется, своим возникновением не какой-то ошибке в логике, а смутности или двусмысленности некоторых нелогических понятий, поэтому поставленные ими проблемы касаются языка и должны решаться лингвистикой.
Рамсею казалось, что математикам и логикам незачем интересоваться семантическими парадоксами. В дальнейшем оказалось, однако, что некоторые из наи-
214
более значительных результатов современной логики были получены как раз в связи с более глубоким изучением именно этих нелогических парадоксов.
Предложенное Рамсеем деление парадоксов широко использовалось на первых порах и сохраняет некоторое значение и теперь. Вместе с тем становится все яснее, что это деление довольно-таки расплывчато и опирается по преимуществу на примеры, а не на углубленный сопоставительный анализ двух групп парадоксов. Семантические понятия сейчас получили точные определения, и трудно не признать, что эти понятия действительно относятся к логике. С развитием семантики, определяющей свои основные понятия в терминах теории множеств, различие, проведенное Рамсеем, все более стирается.