
- •1.1 Класифікація цифрових систем автоматичного керування по методу використання цифрової обчислювальної машини цом ( мікропроцесорів мп, мікроконтролерів мк ) для цілії керування.
- •1.2 Класифікація систем керування за принципом організації
- •1.2.1 Принцип розімкненого керування.
- •1.2.2 Принцип замкнутого керування.
- •1.3 Класифікація систем автоматичного керування за ціллю керування.
- •1.4 Класифікація систем автоматичного керування за математичним описом оператора системи.
- •1.4.1 Лінійні системи автоматичного керування.
- •1.4.2 Нелінійні системи автоматичного керування.
- •1.5 Класифікація систем автоматичного керування за характером похибки у сталому режиму.
- •1.6 Класифікація за характером зміни оператора системи у часі.
- •1.7 Класифікація систем керування за характером перетворення
- •1.7.1 Дискретні системи автоматичного керування.
- •1.7.2 Функції цифрового керування
- •1.7.3 Безпосереднє цифрове керування
- •1.8 Перетворення та обробка сигналів
- •1.8.1 Цифрові сигнали та кодування
- •1.8.3 Похибки, які визиваються квантуванням за рівнем
- •1.9 Коректування впливу похибки перетворення аналогового сигналу у дискретний.
- •1.10 Перетворення та методи представлення сигналів
- •1.10.1 Перетворення Лапласа
- •1.10.2 Властивості перетворення Лапласа.
- •1.10.3 Перетворення Фур’є .
- •1.10.4 Властивості перетворення Фур’є
- •1.10.5 Дискретне перетворення Лапласа.
- •Для вiдносного часу використовується символьна форма зображення
- •1.10.7 Дискретне перетворення Фур’є
- •1.10.8 Z – перетворення
- •1.10.9 Основнi властивостi -перетворення
- •Вiдповiдно теорiї зсуву
- •Хай дискретне рiвняння має вигляд
- •1.10.10 Процеси мiж моментами квантування (Метод модифікованого - перетворення).
- •1.10.11 W-перетворення
- •1.11 Дискретні сигнали.
- •2.2 Дискретні рівняння систем керування та методи їх розв’язання.
- •2.1.1 Складання дискретних рівнянь лінійних систем
- •2.3 Вагова (імпульсна) перехідна функція дискретної системи.
- •2.5 Передаточні функції дискретних систем керування.
- •2.5.1 Властивостi w(z)
- •2.5.2 Передаточка функція умовно розімкнутої дискретної системи
- •Очевидно, що
- •2.5.3 Передаточнi функцiї замкнених дискретних систем
- •2.6 Умови стійкості дискретних систем керування.
- •Тому що рiшення дискретного рiвняння вiдшукується у виглядi , де вiльна складова, яка є рiшенням однорiдного рівняння
- •2.6.1 Алгебраїчні критерії стійкості дискретних систем. Критерій гурвіця.
- •2.6.2 Критерій Шур-Кона.
- •2.5.3 Критерій Джурі.
- •2.7 Оцінка точностi роботи дискретних систем у сталих режимах
- •2.7.1 Дослiдження швидкодiї та коливальностi дискретних систем управлiння
- •2.8 Частотнi характеристики дискретних систем
- •2.9.2 Критерій Михайлова.
- •2.9.4 Визначення стійкості по логарифмічним характеристикам.
- •Типові ланки та їх характеристики
- •Якщо покласти , , то
- •2.11.1.1 Метод розкладу на елементарнi дробi.
- •2.11.1.2 Метод нормальних змiнних стану. Нехай система описується дискретним рiвнянням
- •2.11.2 Складання вмм дискретної системи
- •Тому що то суттєву роль у визначенні змiнних стану грає вираз який називають матрицею переходу або матричною експонентою.
- •Тодi рiшення рiвнянь стану записується у виглядi
- •Так, якщо задано цифрову систему керування , а матриця визначена як
- •Тому що
- •2.11.4 Визначення передаточної функції дискретної системи
- •2.11.5 Визначення умов стійкості
- •Тому що рiшення цього рiвняння добувається у виглядi
- •2.11.6 Цифрове моделювання неперервних систем керування.
- •При цьому
- •Визначається перехідний процес
Визначається перехідний процес
Рис. 153 Перехідний процес пробудований по ВММ
П 29
Для дискретної системи керування, неперервна частина якої має передаточну функцію
1. Визначається передаточна функція умовно розімкнутої системи у Z-формі методом
розкладу на прості дробі
Знаходяться
невизначені коефіцієнти та визначається
1.4 Визначається передаточна функція замкнутої системи
Виконується розв’язання дискретного рівняння
Початкові
умови
Рис.154 Перехідний процес побудований подискретному рівнянню
Складається векторна матрична модель
Виконується розв’язання векторно матричного рівняння
Рис 155 Перехідний процес побудований по ВММ з перевіркою по дискретному рівнянню—процеси співпадають
П 30
Виконати цифрове моделювання диференційного рівняння
Для
спрощення
1.
Моделювання за допомогою Z-форм . Крок
розв’язання
2. Перевірка
3. Визначається ВММ
Рис. 156 Перехідні процеси добре співпадають
Лабораторна робота №5 Дослідження методів цифрового моделювання
Призначення: Лабораторні дослідження націлені на закріплення знань основних підходів до цифрового моделювання основних методів цифрового інтегрування та диференціювання, можливості на їх основі складати моделі типових алгоритмів цифрового моделювання
Ціль роботи: Закріплення знань особливостей цифрового інтегрування по методу прямокутників та методу трапеції, методів цифрового диференціювання , особливостей складання типових алгоритмів для реалізації їх на основі мікроконтролерної техніки.
Вибір структури та її параметрів блоків інтегрування та диференціювання виконується виходячи із аналізу функціональної схеми блока моделі узагальненої системи керування віртуального лабораторного стенда та обраних цілей лабораторних досліджень. Значення параметрів системи обирається із таблиці варіантів
В лабораторній роботі необхідно:
Скласти математичну модель процесу інтегрування по методу прямокутників
Скласти математичну модель процесу інтегрування по методу трапецій
Виконати експериментальні дослідження та порівняти здобуті результати
Виконати експериментальні дослідження диференціювання гармонічних сигналів
Визначити вплив періоду квантування на точність реалізації типових алгоритмів
Висновок. Відповідно теоретичним розрахункам та обробки експериментальних досліджень зробити висновки по лабораторній роботі згідно обраних цілей.