
- •Тема № 5 Микробиологическая переработка органических отходов. Биоконверсия растительного сырья в топливо (получение биогаза, биоэтанола, биодизеля) План:
- •1. Микробиологическая переработка органических отходов.
- •2. Биоконверсия растительного сырья в топливо (получение биогаза, биоэтанола, биодизеля).
- •1. Микробиологическая переработка органических отходов
- •1.1. Переработка растительного сырья и углеводсодержащих отходов в белок одноклеточных организмов
- •1.2. Силосование
- •1.3. Компостирование
- •2. Биоконверсия растительного сырья в топливо (получение биогаза, биоэтанола, биодизеля)
- •2.2. Экобиотехнологический процесс получения биоэтанола
- •Сырьё для производства биоэтанола
- •Промышленное производство спирта из биологического сырья.
- •Этанол как топливо
- •Топливные смеси этанола
- •Экологические аспекты применения этанола в качестве топлива.
- •2.3. Технология получения биодизеля, сырье для получения, биодизельные установки. Использование биодизеля в качестве топлива для автомобилей и с/х техники
- •Технология производства.
- •Применение.
- •Сырьё для производства.
- •Производство биодизеля
- •Экологические аспекты применения и производства.
- •Достоинства биодизеля:
- •Недостатки биодизеля:
- •Производство биодизеля из водорослей
- •Тема № 6 Вермикомпостирование План:
- •1. Биологические основы вермикультуры, вермикомпост (биогумус), вермисток (гумисол)
- •2. Вермитехнология: общие принципы разведения калифорнийского красного червя (содержание, кормление)
- •Агроэкологические требования к питательному субстрату
- •Ферментация субстрата
- •Выращивание вермикультуры зимой
- •Приготовление вермикомпоста на приусадебных и дачных участках
- •Вредители дождевых червей
- •3. Агроэкологическая характеристика копролита (биогумуса)
- •2. Энтомопатогенные препараты
- •Грибные энтомопатогенные препараты
- •Вирусные энтомопатогенные препараты
- •3. Бактерии, стимулирующие рост растений
- •4. Биоудобрения. Производство и применение, в том числе препаратов – азотфиксаторов и препаратов, улучшающих снабжение растений фосфором
- •Производство азотобактерина
- •Бактериальное удобрение фосфобактерин
- •5. Биологические средства защиты растений на основе антибиотиков
- •Кормовые антибиотики, антибиотики против фитопатогенов, биостимуляторы, пищевые консерванты
- •2. Биохимические методы анализа на основе микробных ферментов
- •3. Использование микроорганизмов и тканей живых организмов в качестве биосенсоров
- •4. Применение биосенсоров
- •Тестовые задания
- •Список литературы
2. Биохимические методы анализа на основе микробных ферментов
К биологическим методам относят и биохимические методы, в частности ферментативные, а также различные методики, например индикаторные трубки на основе ферментов и других биологических материалов. Механизм получения информации о составе какого-либо объекта с помощью этих методов и устройств повторяет природный процесс в живых организмах, что особенно важно при анализе объектов биологического происхождения.
Ферменты – это биологические катализаторы, избирательно катализирующие многие химические превращения, как в живой клетке, так и вне организма.
Природные ферменты сложно выделить в чистом виде, в растворенном виде их хранить нельзя, т.к. их препараты неустойчивы при хранении и воздействии на них различных факторов (тепловых, химических). Нельзя многократно использовать одну порцию фермента из-за сложности отделения его от других компонентов раствора. Очищенные препараты ферментов дорого стоят.
Как только появилась возможность использования каталитических свойств ферментов вне их связи с живым организмом и возможность сохранения этой способности в течение длительного времени практически без изменения появилась возможность использовать ферменты в биосенсорных системах. Достижения в этой области биохимии и энзимологии дали начало развитию нового направления аналитической химии – безреагентных методов анализа, основанных на использовании различных биохимических сенсоров.
Первое упоминание об аналитических устройствах на основе ферментов или ферментсодержащих материалов появилось в 60-х годах прошлого века. Затем в обиход вошло понятие "биосенсор" или "биочип".
Функционально биосенсоры сопоставимы с датчиками живого организма – биорецепторами (примеры: синаптические соединения нервных волокон животных, хлорофилл у растений, родопсин у бактерий и т.д.), способными преобразовывать все типы сигналов, поступающих из окружающей среды, в электрические.
Принцип работы биосенсора достаточно прост. Исследуемое вещество диффундирует через полупроницаемую мембрану в тонкий слой биокатализатора, в котором и протекает ферментативная реакция. Продукт ферментативной реакции определяется с помощью электрода, на поверхности которого закреплен фермент, такое устройство называют ферментным электродом. Таким образом, определения "биосенсор" и "ферментный электрод" в этом случае синонимы.
При конструировании биосенсора основной задачей было увеличение продолжительности действия фермента, решением которой стала иммобилизация ферментов.
В ходе иммобилизации с помощью специальных реагентов фермент "закрепляют" либо на поверхности адсорбентов, например силикагеля, угля или целлюлозы, либо вводят в пленку пористого полимера, либо ковалентно, то есть с помощью химических связей, "пришивают" к какой-либо подложке. При этом фермент закрепляется, перестает быть подвижным, не вымывается из биослоя, а его каталитическое действие сохраняется.
При конструировании биосенсоров оказалось перспективным использовать так называемую планарную технологию (фотолитографию, полупроводниковую технику покрытий и т. д.), с помощью которой можно изготовить так называемый биочип, объединяющий сенсорную систему, трансдьюсер, аналого-цифровой преобразователь и микропроцессор для измерения аналитического сигнала и расчета результатов анализа.
Примером ферментных биосенсоров может служить биосенсор на основе гидролаз, ферментов, являющихся катализаторами гидролитического расщепления субстратов. Эти биосенсоры предназначаются, как правило, для эколого-аналитического контроля остаточных количеств пестицидов класса фосфорорганических соединений и некоторых отравляющих веществ. Если при гидролизе какого-либо субстрата ферментом класса гидролаз образуется электрохимически активное соединение, то, контролируя содержание последнего, можно контролировать ферментативную реакцию. Однако в присутствии веществ, являющихся ингибиторами, активность фермента уменьшается, что и обнаруживается по сигналу, регистрируемому электродом. Эффект изменения активности фермента доступен для измерения уже при действии ультраследовых количеств ингибитора – на уровне пико- и фемтограмм.