
- •1. Изоляция и перенапряжения или техника высоких напряжений
- •1.1. Применение высоких напряжений для передачи электрической энергии
- •1.2. Изоляция электрических установок
- •1.3. Перенапряжения, воздействующие на электроустановки
- •1.4. Работа изоляции в условиях длительного воздействия рабочего напряжения
- •2. Внешняя изоляция высоковольтного электрооборудования электроэнергетических систем
- •2.1. Общая характеристика внешней изоляции
- •2.2. Регулирование электрических полей во внешней изоляции
- •2.3. Диэлектрики, используемые во внешней изоляции
- •2.4. Назначение и типы изоляторов.
- •2.5. Электрофизические процессы в газах
- •2.6. Лавина электронов и условие самостоятельности разряда
- •2.7. Время разряда и вольт-секундные характеристики воздушных промежутков
- •2.8. Разряд в длинных воздушных промежутках
- •3. Разряд вдоль поверхности твердого диэлектрика
- •3.1. Механизм перекрытия изолятора в сухом состоянии
- •3.2. Механизм перекрытия изолятора при загрязненной поверхности и под дождем
- •3.3. Выбор изоляторов воздушных лэп и ру
МОДУЛЬ 1
1. Изоляция и перенапряжения или техника высоких напряжений
1.1. Применение высоких напряжений для передачи электрической энергии
Применение высоких напряжений для передачи электрической энергии на большие расстояния играет важную роль в развитии мировой электроэнергетики и нашей страны. Наиболее высокое напряжение, используемое в мире в настоящее время 750 кВ (Россия, Украина) и 765 кВ (США, Канада, Бразилия). В Европейской объединенной энергосистеме (UCPTE) наивысшее напряжение 400 кВ. В мире была сооружена лишь одна линия ультравысокого напряжения (УВН) 1150 кВ Экибастуз – Кокчетав – Кустанай – Челябинск (Казахстан – Россия). Все оборудование этой уникальной электропередачи было разработано в нашей стране и выпущено отечественной промышленностью. В настоящее время 500 км этой линии эксплуатируется под напряжением 500 кВ.
Рост напряжений, который происходил в течение всего периода развития электроэнергетики, определяется экономическими факторами. Стоимость линии электропередачи (ЛЭП) примерно пропорциональна номинальному напряжению, в то время как её пропускная способность пропорциональна квадрату этого напряжения. Себестоимость передачи электроэнергии снижается при повышении номинального напряжения, уменьшаются и удельные капиталовложения.
Экономические факторы также способствовали сооружению мощных электростанций, поскольку удельные капиталовложения и металлоёмкость для крупных электростанций значительно ниже, чем для мелких.
Необходимость передачи электроэнергии на большие расстояния связана с удалением электростанций от центров потребления, что вызвано повышением экологических требований к электростанциям, прежде всего необходимостью сокращения занимаемых под них земельных площадей и усложнением их размещения вблизи крупных промышленных центров. Это, в свою очередь, влечет за собой увеличение длины линий электропередачи. Для того чтобы снизить потери электроэнергии при передаче по длинным линиям определенной мощности необходимо повысить напряжение и уменьшить ток. В России передача электроэнергии на значительные расстояния осуществляется по линиям с номинальными напряжениями 110, 220, 330, 500, и 750 кВ. В таблице 1.1. представлены пропускная способность линий различных номинальных напряжений и их длина в зависимости от номинального напряжения.
Надежная работа электрических систем высокого напряжения в основном определяется изоляцией и теми напряжениями, которые на эту изоляцию воздействуют. Повышения напряжения, которые могут быть опасными для изоляции, называются перенапряжениями. Использование высоких напряжений в электрических системах связано с проблемой обеспечения безаварийной работы изоляции всех элементов электрической системы. Рассматриваемая проблема получила название “Техника высоких напряжений в электроэнергетике”
Таблица 1.1.
Пропускная способность электропередачи 110-1150 кВ [ ЭТС, Т.3, с. 239]
-
Напряжение
линии, кВ
Натуральная мощность, МВт,
при волновом сопротивлении, Ом
Передаваемая
мощность на
одну цепь, МВт
Длина
передачи,
км
400
300-314
250-275
110
30
__
__
25-50
50-150
220
120
160
__
100-200
150-250
330
270
350
__
300-400
200-300
500
600
__
900
700-900
800-1200
750
__
__
2100
1800-2200
1200-2000
1150
__
__
5200
4000-6000
2500-3000
Техника высоких напряжений (ТВН) в настоящее время представляет собой науку о характеристиках вещества и процессах в нем при экстремальных электромагнитных воздействиях - высоких напряжениях и сильных токах, а также о технологическом использовании этих процессов. Один из основных разделов ТВН посвящен свойствам и характеристикам изоляционных конструкций электрооборудования высокого напряжения и условиям их надежной эксплуатации при воздействии рабочего напряжения, грозовых и внутренних перенапряжений. Учебная дисциплина, соответствующая этому разделу называется «Изоляция и перенапряжения». Структура этой дисциплины достаточно разнородна и представляет собой два больших раздела «Изоляция электрических установок высокого напряжения» и «Перенапряжения в электрических системах». Эти разделы связаны между собой задачей координации изоляции, которая заключается в приведении в соответствие уровней электрической прочности изоляции и уровней воздействующих на электроустановки перенапряжений. На схеме (рис.1) представлена структура учебной дисциплины, которая поможет студентам составить общее представление о содержании этой дисциплины.