
- •Раздел I. Множества, функции, отношения. Лекция № 1. Множества и операции над ними.
- •1. Основные понятия теории множеств.
- •2. Операции над множествами и их свойства.
- •3. Векторы и прямые произведения.
- •Лекция № 2. Соответствия и функции.
- •Соответствия.
- •Взаимнооднозначные соответствия и мощности множеств.
- •Отображения и функции.
- •Лекция № 3. Отношения и их свойства.
- •Основные понятия и определения.
- •Свойства отношений.
- •Лекция № 4. Основные виды отношений.
- •Отношения эквивалентности.
- •Отношения порядка.
- •Раздел II. Введение в общую алгебру. Лекция № 5. Элементы общей алгебры.
- •1. Свойства бинарных алгебраических операций.
- •2. Алгебраические структуры.
- •Гомоморфизм и изоморфизм.
- •Лекция № 6. Различные виды алгебраических структур.
- •Полугруппы.
- •Группы.
- •Поля и кольца.
- •Раздел III. Введение в логику. Лекция № 7. Элементы математической логики.
- •Булевы функции.
- •Лекция № 8. Логические функции.
- •Функции алгебры логики.
- •Примеры логических функций.
- •Суперпозиции и формулы.
- •Лекция № 9. Булевы алгебры.
- •Разложение функций по переменным. Совершенная дизъюнктивная нормальная форма.
- •Булева алгебра функций.
- •Эквивалентные преобразования.
- •Лекция № 10. Булевы алгебры и теория множеств.
- •Двойственность.
- •Булева алгебра и теория множеств.
- •Днф, интервалы и покрытия.
- •Лекция № 11. Полнота и замкнутость.
- •Функционально полные системы.
- •Алгебра Жегалкина и линейные функции.
- •Замкнутые классы. Монотонные функции.
- •Теоремы о функциональной полноте.
- •Лекция № 12. Язык логики предикатов.
- •Предикаты.
- •Кванторы.
- •Истинные формулы и эквивалентные соотношения.
- •Доказательства в логике предикатов.
- •Лекция № 13. Комбинаторика.
- •Правила суммы и произведения.
- •Размещения.
- •Перестановки.
- •Сочетания. Бином Ньютона.
- •Раздел IV. Теория графов. Лекция № 14. Графы: основные понятия и операции.
- •Графы, их вершины, рёбра и дуги. Изображение графов.
- •Матрица инцидентности и список рёбер. Матрица смежности графа.
- •Идентификация графов, заданных своими представлениями.
- •Лекция № 15. Маршруты, цепи и циклы.
- •Основные определения.
- •Связные компоненты графов.
- •Расстояния. Диаметр, радиус и центр графа. Протяжённости.
- •Эйлеровы графы.
- •Лекция № 16. Некоторые классы графов и их частей.
- •Деревья.
- •Ориентированные графы.
- •Графы с помеченными вершинами и рёбрами.
Эквивалентные преобразования.
Пример
2. Возьмём соотношение 8а и подставим
вместо переменной
выражение
.
Получим:
.
Здесь в обеих частях стоят формулы,
неэквивалентные исходным формулам, но
эквивалентные между собой. Если же в
правой части нового соотношения формулу
заменить формулой
,
эквивалентной ей в силу соотношения 8а
и затем заменить
на
(согласно 6), то получим
.
Причём все формулы в полученной цепи
преобразований являются эквивалентными:
.
Такие преобразования, использующие эквивалентные соотношения и правило замены, называют эквивалентными преобразованиями. Эквивалентные преобразования являются мощным средством доказательства эквивалентности формул, как правило, более эффективным, чем их вычисление на наборах значений переменных.
В булевой алгебре принято опускать скобки в следующих двух случаях: а) при последовательном выполнении нескольких конъюнкций или дизъюнкций; б) если они являются внешними скобками у конъюнкции. Оба соглашения совершенно аналогичны общепринятому опусканию скобок для операции умножения в арифметических выражениях.
Рассмотрим несколько способов упрощения формул с помощью эквивалентных преобразований, позволяющих получить формулы, содержащие меньшее количество символов.
а) Поглощение:
1)
и 2)
.
Докажем данное равенство подробно,
используя для доказательства соотношения
3, 7а и 7в.
.
Далее будем опускать доказательства приводимых равенств, которые при желании можно получить из соотношений 1 – 10 и уже доказанных равенств.
б) Склеивание:
.
в) Обобщённое
склеивание:
.
г)
.
Одним из главных видов упрощения формул является приведение их к дизъюнктивной нормальной форме (ДНФ).
Определение. Элементарными конъюнкциями называются конъюнкции переменных или их отрицаний, в которых каждая переменная встречается не более одного раза. Дизъюнктивной нормальной формой называется формула, имеющая вид дизъюнкции элементарных конъюнкций.
Заметим, что СДНФ является частным случаем ДНФ.
Приведение формулы к ДНФ выполняется так. Сначала с помощью соотношений 6 и 8 все отрицания “спускаются” до переменных. Затем раскрываются скобки. После этого с помощью соотношений 5, 9 и 10 удаляются лишние конъюнкции и повторения переменных в конъюнкциях. Наконец, с помощью соотношений 7а – 7е удаляются лишние константы. При этом необходимо помнить, что ДНФ данной формулы может быть не единственной.
Пример 3.
Привести к ДНФ формулу
.
Решение:
.
В итоге получили дизъюнкцию элементарных
конъюнкций, то есть ДНФ.
Доказано, что если из формулы можно с помощью эквивалентных преобразований получить формулу , то можно из формулы (с помощью тех же соотношений) получить формулу . Иначе говоря, всякое эквивалентное преобразование обратимо. Это позволяет сформулировать следующую теорему.
Теорема 8.3. Для любых двух эквивалентных формул и существует эквивалентное преобразование в и наоборот с помощью соотношений 1 – 10.
Аналогично понятию ДНФ определяется понятие конъюнктивной нормальной формы (КНФ), то есть КНФ есть конъюнкция элементарных дизъюнкций. Переход от КНФ к ДНФ и обратно всегда осуществим (обычно, с помощью формул Де Моргана).
Пример 4.
Привести формулу
к КНФ.
Заменим исходную формулу её двойным отрицанием, а затем применим соотношения 8.
.