Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка лаб ГО СК.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
1.4 Mб
Скачать

Контрольные вопросы

1. Перечислить характерные особенности гидропривода типа УPC Кировского завода.

2. Рассказать о назначении основных элементов стенда.

3. Какие факторы и как влияют на различные характе­ристики гидропривода?

4. Можно ли по механической характеристике гидропри­вода определить значение его объемного КПД?

5. Почему экспериментальные механические характери­стики гидропривода при значениях параметра регулирования +20° и –20° вероятнее всего будут отличаться друг от друга по абсолютным значениям частоты вращения и жесткости?

6. Почему механические характеристики гидропри­вода при различных значениях параметра регулирования имеют явно выраженную различную жесткость?

7. Данные какой из проделанных серий опытов получены с наибольшей степенью достоверности?

8. Как определить потери холостого хода гидропривода по графику объемного КПД в функции от момента на выход­ном валу?

Работа № 4 определение некоторых динамических параметров электрогидропривода с объемным регулированием

Цель работы – ознакомиться с одним из методов экспе­риментального определения постоянных времени, времени за­паздывания, коэффициента демпфирования, частоты собст­венных и демпфированных колебаний разомкнутого электро­гидропривода с объемным регулированием, а также получить практические навыки по расшифровке осциллограмм.

Общие теоретические положения

Любая система автоматического регулирования должна обладать определенными динамическими свойствами. Поэто­му расчет динамических характеристик является одним из ос­новных этапов проектирования САР.

Объективный расчет динамики сложной системы может быть осуществлен лишь в том случае, когда известны дина­мические уравнения или характеристики тех звеньев, из кото­рых состоит эта система. Однако на практике не всегда удается составить достоверное уравнение динамики какого-нибудь звена реальной системы. Тогда на основании извест­ных переходных функций типовых звеньев можно подобрать это уравнение по экспериментально снятым временным и час­тотным характеристикам.

Часто бывает, что вид уравнения звена примерно изве­стен, но трудно аналитическим путем определить числовые значения его коэффициентов, обычно называемых постоян­ными времени. В таком случае, пользуясь типовыми переход­ными функциями, можно найти необходимые коэффициенты из экспериментально снятых характеристик и, кстати, по­скольку каждому виду уравнения соответствует определенный вид временной или амплитудно-фазовой характеристики, про­верить, удачно ли составлено уравнение звена.

Во многих системах автоматического регулирования в ка­честве исполнительного звена используются электрогидроприводы с объемным регулированием. При определенных допу­щениях и отсутствии шарнирной (позиционной) нагрузки на выходе уравнение движения разомкнутого электрогидропри­вода при номинальных значениях рабочих параметров может быть представлено в следующем виде:

. (4.1)

В ряде литературных источников это уравнение записано несколько иначе, а именно:

(4.2)

В этих уравнениях:

– механическая постоянная времени гидропривода, с;

– гидравлическая постоянная с учетом упругих деформаций трубопривода, с;

– обобщенная постоянная времени гидропривода, с;

– коэффициент относительного демпфирования;

– текущее значении скорости вращении вала гидромотора (выходного вала), 1/с ;

– максимальная скорость вращения вала гидромотора, 1/c;

– номинальная скорость вращения вала гидромотора, 1/c;

– падение скорости вращения вала гидромотора, обусловленное наличием утечек в агрегате при данной статистической нагрузке 1/c;

– функциональная зависимость параметра регулирования, выражаемого в относительных единицах;

– момент инерции нагрузки приведенной к валу гидромотора, ;

– удельная утечка, ;

– максимальная теоретическая производительность насоса, ;

– объемный КПД гидропривода при номинальном режиме работы;

– номинальное рабочее давление в полости нагнетания, ;

– характерный объем гидромотора, /рад ;

– рабочий объем гидромотора, ;

– обобщенный коэффициент объемного сжатия, ;

– объемный модуль упругости жидкости, ;

– внутренний диаметр соединительного трубопровода, см;

– модуль упругости материала трубопровода, кгс/см2;

s – толщина стенки трубопровода, см;

– объем жидкости заключенной в полости высокого давления гидропривода, см3 ;

– рабочий объем насоса (максимальное значение), ;

– скорость вращения вала насоса, 1/с ;

– приведенный к валу гидромотора момент внешней статической нагрузки, ;

– гидромеханический КПД гидромотора.

Как известно, в случае Тм < 4Тг решение уравнения (4.1) или (4.2) будет соответствовать переходной функции типо­вого колебательного звена, а в случае Тм > 4Тг – апериодиче­ского звена второго порядка.

К сожалению, если пользоваться в расчетах значениями механической и гидравлической постоянных времени (особенно Тм), найденными по вышеприведенным теоретическим зависимостям, то будет получена сильно искаженная картина динамических свойств как собственно электрогидропривода, так и всей системы, включающей его. Подобный факт имеет место вследствие того, что при составлении уравнения движения электрогидропривода весьма трудно учесть все факторы, влияющие на его динамику. В частности, практически невозможно учесть в дифференциальном уравнении движения начальное запаздывание, сопровождающее переходные процессы в гидравлических агрегатах; большие затруднения возникают при попытке учесть скольжение приводного электродвигателя, пульсацию подачи и давления, текущее изменение вязкости жидкости и многие другие факторы.

Вместе с тем переходные характеристики гидропривода, рассчитанные в соответствии с уравнением (4.1) или (4.2), но с использованием экспериментально полученных значений постоянных времени и времени начального запаздывания τ3, практически совпадают с действительными. Последнее об­стоятельство вполне оправдывает существующие методики анализа работы сложных агрегатов, когда в сравнительно простые теоретические уравнения вводятся отдельные пара­метры, найденные экспериментальным путем.

В тех случаях, когда необхо­димо исследовать динамику гидропривода или электрогидропривода при различных условиях работы, исходные уравне­ния движения должны быть записаны соответственно. При этом, очевидно, и значения постоянных коэффициентов Тм и Тг должны быть соответствующими, то есть, ставя тот или иной гидропривод на испытательный стенд с целью опреде­ления его динамических параметров, последние целесообраз­но определить для нескольких наиболее вероятных режимов работы, которые, как известно, обусловливаются нагрузкой, температурой рабочей жидкости и параметром регулирова­ния.