
- •Уровни модели osi
- •1. Физический уровень
- •2. Канальный уровень
- •3. Сетевой уровень
- •4. Транспортный уровень
- •5. Сеансовый уровень
- •6. Уровень представления
- •7. Прикладной уровень
- •Аналоговая модуляция
- •Методы аналоговой модуляции
- •Цифровое кодирование
- •Дискретная модуляция аналоговых сигналов
- •Управление потоком
- •5. Технология Ethernet. Уровни mac и llc. Метод доступа csma/cd. Mac-адрес. Понятие коллизий. Структура стандартов ieee 802.X.
- •6. Локальные сети на основе разделяемой среды. Маркерные методы доступа. Технология Token Ring. Технология fddi.
- •7. Стек протоколов tcp/ip. Уровни и основные протоколы стека. Адресация в сетях tcp/ip. Формат ip-адреса. Протоколы разрешения адресов.
- •8. Схема ip-маршрутизации. Упрощенная таблица маршрутизации. Маршрутизация без и с использованием масок. Алгоритмы динамической маршрутизации. Методы выбора оптимального пути.
- •9. Протоколы транспортного уровня tcp и udp. Порты. Функции протоколов. Особенности и отличия протоколов. Протокол icmp. Протокол tcp
- •10. Телефонные сети. Передача данных по телефонным сетям. Модемные технологии 56к.
- •11. Первичные сети. Сети pdh. Иерархия скоростей. Методы мультиплексирования. Недостатки технологии.
- •12. Первичные сети. Сети sdh. Иерархия скоростей. Методы мультиплексирования. Кадры stm-n.
- •Технология синхронной цифровой иерархии первоначально была разработана компанией Bellcore под названием «Синхронные оптические сети» - Synchronous Optical neTs, sonet.
- •13. Сети X.25. Устройства pad. Адресация в сетях X.25. Стек протоколов
- •Адресация в сетях х.25
- •Список вопросов по дисциплине «Сетевые технологии» (ст.Преподаватель Хамадеев ш.Ш.)
- •14. Сети isdn. Пользовательские интерфейсы. Подключение пользовательского оборудования. Адресация в сетях isdn. Стек протоколов и структура сети.
- •Пользовательские интерфейсы isdn основаны на каналах трех типов:
- •15. Сети Frame Relay. Структура сети. Формат кадра. Поддержка качества обслуживания.
- •16. Технология atm. Коммутация ячеек. Стек протоколов. Уровень адаптацию. Категории услуг.
6. Уровень представления
Этот уровень обеспечивает гарантию того, что информация, передаваемая прикладным уровнем, будет понятна прикладному уровню в другой системе. Он имеет дело с формой представления передаваемой по сети информации, не меняя при этом ее содержания (например кодов ASCII и EBCDIC). На этом уровне может выполняться шифрование и дешифрование данных. Примером протокола, работающего на уровне представления, является протокол Secure Socket Layer (SSL).
7. Прикладной уровень
Это в действительности просто набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например, с помощью протокола электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называется сообщением (message). К протоколам прикладного уровня относится, в частности, упоминавшийся ранее протокол HTTP, с помощью которого браузер взаимодействует с веб-сервером. Приведем в качестве примера также несколько наиболее распространенных реализаций сетевых файловых служб: SMTP, NFS и FTP в стеке TCP/IP.
Примеры коммуникационного оборудования, работающего на соответствующих уровнях
Компьютер с установленной на нем сетевой ОС взаимодействует с другим компьютером с помощью протоколов всех семи уровней. Это взаимодействие компьютеры осуществляют опосредовано через различные коммуникационные устройства: концентраторы, модемы, мосты, коммутаторы, маршрутизаторы, мультиплексоры. В зависимости от типа коммуникационное устройство может работать либо только на физическом уровне (повторитель), либо на физическом и канальном (мост/коммутатор, сетевой адаптер), либо на физическом, канальном и сетевом, иногда захватывая и транспортный уровень (маршрутизатор).
2. Методы передачи данных на физическом уровне. Типы физических каналов. Характеристики физических каналов. Сетевые топологии. Методы аналоговой модуляции и цифрового кодирования. Дискретная модуляция аналоговых сигналов.
Типы физических каналов
• витая пара;
• коаксиальные кабели;
• волоконно-оптические кабели.
Витой парой называется скрученная пара проводов. Этот вид среды передачи данных очень популярен. Кабель может состоять из нескольких скрученных пар (внешние кабели иногда содержат до нескольких десятков таких пар). Скручивание проводов снижает влияние внешних и взаимных помех на полезные сигналы, передаваемые по кабелю.
Все кабели UTP на основе неэкранированной витой пары независимо от их категории выпускаются в 4-парном исполнении. Каждая из 4-х пар кабеля имеет определенный цвет и шаг скрутки. Обычно две пары предназначены для передачи данных, две — для передачи голоса.
Экранированная витая пара хорошо защищает передаваемые сигналы от внешних помех,
а также меньше излучает электромагнитные колебания вовне, что, в свою очередь, защищает пользователей сетей от вредного для здоровья излучения. Наличие заземляемого экрана удорожает кабель и усложняет его прокладку.
Коаксиальный кабель состоит из несимметричных пар проводников. Каждая пара представляет собой внутреннюю медную жилу и соосную с ней внешнюю жилу, которая может быть полой медной трубой или оплеткой, отделенной от внутренней жилы диэлектрической изоляцией. Внешняя жила играет двоякую роль — по ней передаются информационные сигналы и она является экраном, защищающим внутреннюю жилу от внешних электромагнитных полей. Существует несколько типов коаксиального кабеля, отличающихся характеристиками и областями применения: для локальных компьютерных сетей, для глобальных телекоммуникационных сетей, для кабельного телевидения и т. п. Согласно современным стандартам коаксиальный кабель не считается хорошим выбором
при построении структурированной кабельной системы зданий. Далее приводятся основные типы и характеристики этих кабелей.
• «Толстый» коаксиальный кабель разработан для сетей Ethernet 10Base-5 (сложно монтировать — он плохо гнется).
• «Тонкий» коаксиальный кабель предназначен для сетей Ethernet 10Base-2 (обладает гораздо большей гибкостью, что удобно при монтаже).
• Телевизионный кабель с волновым сопротивлением 75 Ом широко применяется в кабельном телевидении.
Волоконно-оптический кабель состоит из тонких (5-60 микрон) гибких стеклянных волокон, по которым распространяются световые сигналы. Это наиболее качественный тип кабеля — он обеспечивает передачу данных с очень высокой скоростью (до 10 Гбит/с и выше) и к тому же лучше других типов передающей среды обеспечивает защиту данных от внешних помех (легко экранировать). Каждый световод состоит из центрального проводника света (сердцевины) — стеклянного волокна, и стеклянной оболочки. Распространяясь по сердцевине, лучи света не выходят за ее пределы, отражаясь от покрывающего слоя оболочки.
Понятие «мода» описывает режим распространения световых лучей в сердцевине кабеля. Угол отражения луча называется модой луча.
В одномодовом кабеле используется центральный проводник очень малого диаметра. При этом практически все лучи света распространяются вдоль оптической оси световода, не отражаясь от внешнего проводника (дорогой).
В многомодовых кабелях используются более широкие внутренние сердечники, которые легче изготовить технологически. В многомодовых кабелях во внутреннем проводнике одновременно существует несколько световых лучей, отражающихся от внешнего проводника под разными углами.
Многомодовые кабели применяют в основном для передачи данных на скоростях не более 1 Гбит/с на небольшие расстояния (до 300-2000 м), а одномодовые — для передачи данных со сверхвысокими скоростями в несколько десятков гигабитов в секунду (дальняя связь).
В качестве источников света в волоконно-оптических кабелях применяются:
• светодиоды, или светоизлучающие диоды (Light Emitted Diode, LED);
• полупроводниковые лазеры, или лазерные диоды.
Стоимость волоконно-оптических кабелей ненамного превышает стоимость кабелей на витой паре, но проведение монтажных работ с оптоволокном обходится намного дороже из-за трудоемкости операций и высокой стоимости применяемого монтажного оборудования.
Характеристики физических каналов
Основные характеристики, связанные с передачей трафика через физические каналы:
• Предложенная нагрузка — это поток данных, поступающий от пользователя на вход
сети, характеризуется скоростью поступления данных в сеть в битах в секунду (или килобитах, мегабитах и т. д.).
• Скорость передачи данных (information rate) — это фактическая скорость потока данных, прошедшего через сеть. Эта скорость может быть меньше, чем скорость предложенной нагрузки, так как данные в сети могут искажаться или теряться.
• Емкость канала связи (capacity), называемая также пропускной способностью, представляет собой максимально возможную скорость передачи информации по каналу. Спецификой этой характеристики является то, что она отражает не только параметры физической среды передачи, но и особенности выбранного способа передачи дискретной информации по этой среде.
• Полоса пропускания (bandwidth) — этот термин может ввести в заблуждение, потому что он используется в двух разных значениях. Во-первых, с его помощью могут характеризовать среду передачи. В этом случае он означает ширину полосы частот, которую линия передает без существенных искажений. Из этого определения понятно происхождение термина. Во-вторых, термин «полоса пропускания» используется как синоним термина емкость канала связи. В первом случае полоса пропускания измеряется в герцах (Гц), во втором — в битах в секунду. Различать значения термина нужно по контексту, хотя иногда это достаточно трудно. Полоса пропускания определяет диапазон частот синусоидального сигнала, при которых этот сигнал передается по линии связи без значительных искажений.
Физические каналы связи делятся на несколько типов в зависимости от того, могут они передавать информацию в обоих направлениях или нет.
• Дуплексный канал обеспечивает одновременную передачу информации в обоих направлениях. Дуплексный канал может состоять их двух физических сред, каждая их которых используется для передачи информации только в одном направлении. Возможен вариант, когда одна среда служит для одновременной передачи встречных потоков.
• Полудуплексный канал также обеспечивает передачу информации в обоих направлениях, но не одновременно, а по очереди.
• Симплексный канал позволяет передавать информацию только в одном направлении. Часто дуплексный канал состоит из двух симплексных каналов.
Сетевые топологии
Сетевая топология (от греч. τоπος - место) — способ описания конфигурации сети, схема расположения и соединения сетевых устройств.
Среди множества возможных конфигураций различают полносвязные и неполносвязные.
Рис. 2.10. Типовые топологии сетей
Ячеистая топология получается из полносвязной путем удаления некоторых связей (рис. 2.10, б). Характерна, как правило, для крупных сетей.
В сетях с кольцевой топологией (рис. 2.10, в) данные передаются по кольцу от одного компьютера к другому. Звездообразная топология (рис. 2.10, г) образуется в случае, когда каждый компьютер
подключается непосредственно к общему центральному устройству, называемому концентратором. Иногда имеет смысл строить сеть с использованием нескольких концентраторов, иерархически соединенных между собой звездообразными связями (рис. 2.10, д). Получаемую в результате структуру называют иерархической звездой, или деревом. В настоящее время дерево является самой распространенной топологией связей как в локальных, так и глобальных сетях.
Особым частным случаем звезды является общая шина (рис. 2.10, е). Основными преимуществами такой схемы являются ее дешевизна и простота присоединения новых узлов к сети, а недостатками — низкая надежность (любой дефект кабеля полностью парализует всю сеть) и невысокая производительность (в каждый момент времени только один компьютер может передавать данные по сети, поэтому пропускная способность делится здесь между всеми узлами сети).
Методы аналоговой модуляции и цифрового кодирования
При передаче дискретных данных по каналам связи применяются два основных типа физического кодирования - на основе синусоидального несущего сигнала и на основе последовательности прямоугольных импульсов. Первый способ часто называется также модуляцией или аналоговой модуляцией. Второй способ обычно называют цифровым кодированием. Эти способы отличаются шириной спектра результирующего сигнала и сложностью аппаратуры, необходимой для их реализации. При использовании прямоугольных импульсов спектр результирующего сигнала получается весьма широким. Применение синусоиды приводит к спектру гораздо меньшей ширины при той же скорости передачи информации. Однако для реализации синусоидальной модуляции требуется более сложная и дорогая аппаратура. Потенциальное или импульсное кодирование применяется на каналах высокого качества, а модуляция на основе синусоидальных сигналов предпочтительнее в том случае, когда канал вносит сильные искажения в передаваемые сигналы.