
- •Уровни модели osi
- •1. Физический уровень
- •2. Канальный уровень
- •3. Сетевой уровень
- •4. Транспортный уровень
- •5. Сеансовый уровень
- •6. Уровень представления
- •7. Прикладной уровень
- •Аналоговая модуляция
- •Методы аналоговой модуляции
- •Цифровое кодирование
- •Дискретная модуляция аналоговых сигналов
- •Управление потоком
- •5. Технология Ethernet. Уровни mac и llc. Метод доступа csma/cd. Mac-адрес. Понятие коллизий. Структура стандартов ieee 802.X.
- •6. Локальные сети на основе разделяемой среды. Маркерные методы доступа. Технология Token Ring. Технология fddi.
- •7. Стек протоколов tcp/ip. Уровни и основные протоколы стека. Адресация в сетях tcp/ip. Формат ip-адреса. Протоколы разрешения адресов.
- •8. Схема ip-маршрутизации. Упрощенная таблица маршрутизации. Маршрутизация без и с использованием масок. Алгоритмы динамической маршрутизации. Методы выбора оптимального пути.
- •9. Протоколы транспортного уровня tcp и udp. Порты. Функции протоколов. Особенности и отличия протоколов. Протокол icmp. Протокол tcp
- •10. Телефонные сети. Передача данных по телефонным сетям. Модемные технологии 56к.
- •11. Первичные сети. Сети pdh. Иерархия скоростей. Методы мультиплексирования. Недостатки технологии.
- •12. Первичные сети. Сети sdh. Иерархия скоростей. Методы мультиплексирования. Кадры stm-n.
- •Технология синхронной цифровой иерархии первоначально была разработана компанией Bellcore под названием «Синхронные оптические сети» - Synchronous Optical neTs, sonet.
- •13. Сети X.25. Устройства pad. Адресация в сетях X.25. Стек протоколов
- •Адресация в сетях х.25
- •Список вопросов по дисциплине «Сетевые технологии» (ст.Преподаватель Хамадеев ш.Ш.)
- •14. Сети isdn. Пользовательские интерфейсы. Подключение пользовательского оборудования. Адресация в сетях isdn. Стек протоколов и структура сети.
- •Пользовательские интерфейсы isdn основаны на каналах трех типов:
- •15. Сети Frame Relay. Структура сети. Формат кадра. Поддержка качества обслуживания.
- •16. Технология atm. Коммутация ячеек. Стек протоколов. Уровень адаптацию. Категории услуг.
15. Сети Frame Relay. Структура сети. Формат кадра. Поддержка качества обслуживания.
Сети frame relay гораздо лучше подходят для передачи пульсирующего трафика локальных сетей по сравнению с сетями Х.25, но только тогда, когда каналы связи приближаются по качеству к каналам локальных сетей, а для глобальных каналов такое качество обычно достижимо только при использовании волоконно-оптических кабелей. Особенностью технологии frame relay является гарантированная поддержка основных показателей качества локальных сетей - средней скорости передачи данных по виртуальному каналу при допустимых пульсациях трафика.
Структура сети
Структура сети FramRelay, очень похожа на сети Х.25.
Пакеты ЛВС, например, IP или IPX, передаются специальному «сборщику-разборщику» кадров FRAD (Frame assembler-disassembler). Основная функция FRAD мультиплексирование/ демультиплексирование нескольких различных высокоуровневых пакетов (IP, IPX и др.) в кадры FR.
Сформированные FRAD пакеты передаются через цепочку коммутаторов FRC (Frame Relay Commetator) к другому адаптеру FRAD, где из кадра FR восстанавливаются высокоуровневые пакеты.
Коммутаторы FR работают подобно коммутаторам Ethernet: ретранслируют кадр без изменений и без контроля ошибок, не соблюдают порядок кадров.
Такой «упрощенный» режим работы коммутатора позволяет передавать кадры очень быстро.
В сетях FR используется статическая маршрутизация: таблицы маршрутизации заполняются на этапе конфигурации системы и не изменяются в процессе ее работы.
Формат кадра Frame Relay
FR является бит-ориентированным синхронным протоколом и использует "кадр" в качестве основного информационного элемента.
Флаг. Все кадры начинаются и заканчиваются комбинацией "флаг": "01111110". С целью предотвращения имитации комбинации "флаг" при передаче кадра проверяется все его содержание между двумя флагами и вставляется бит "0" после каждой последовательности, состоящей из пяти идущих подряд бит "1".
DLCI. Поле номера виртуального соединения (Data Link Connection Identifier, DLCI) состоит из 10 битов, что позволяет использовать до 1024 виртуальных соединений. Поле DLCI может занимать и большее число разрядов - этим управляют признаки ЕАО и ЕА1 (Extended Address - расширенный адрес). Поле C/R имеет обычный для протокола семейства HDLC смысл - это признак «команда-ответ». Поля DE, FECN и BECN используются протоколом для управлением трафиком и поддержания заданного качества обслуживания виртуального канала.
Поле данных может иметь размер до 4056 байт.
Одним из основных отличий протокола FR от HDLC является то, что он не предусматривает передачу управляющих сообщений (нет командных или супервизорных кадров, как в HDLC). Для передачи служебной информации используется специально выделенный канал сигнализации. Другое важное отличие - отсутствие нумерации последовательно передаваемых (принимаемых) кадров. Дело в том, что протокол FR не имеет никаких механизмов для подтверждения правильно принятых кадров.
Поддержка качества обслуживания
Способность технологии Frame Relay гарантировать некоторые параметры качества обслуживания (QoS) является ключевой. Именно поэтому данная технология получила широкое распространение и считается одной из самых перспективных технологий глобальных сетей. Для контроля соглашения о параметрах качества обслуживания все коммутаторы сети Frame Relay выполняют так называемый алгоритм «дырявого ведра» (Leaky Bucket).
Для каждого виртуального соединения определяется несколько параметров, влияющих на качество обслуживания.
- CIR (Committed Information Rate) - согласованная информационная скорость.
- Bc (Committed Burst Size) - согласованный объем пульсации, то есть максимальное количество байтов, которое сеть будет передавать от этого пользователя за интервал времени Т.
- Be (Excess Burst Size) - дополнительный объем пульсации, то есть максимальное количество байтов, которое сеть будет пытаться передать сверх установленного значения Вс за интервал времени Т.
Если эти величины определены, то время Т определяется формулой: Т =Bc/CIR.
Можно задать значения CIR и Т, тогда производной величиной станет величина всплеска трафика Вс.
Соотношение между параметрами CIR, Be, Be и Т иллюстрирует рисунок 41.
Основным параметром, по которому абонент и сеть заключают соглашение при установлении виртуального соединения, является согласованная скорость передачи данных.
Рисунок 41: Соотношение параметров качества
На рис. 41 изображен случай, когда за интервал времени Т в сеть по виртуальному каналу поступило 5 кадров. Средняя скорость поступления информации в сеть составила на этом интервале R бит/с, и она оказалась выше CIR. Кадры f1, f2 и f3 доставили в сеть данные, суммарный объем которых не превысил порог Вс, поэтому эти кадры ушли дальше транзитом с признаком DE=0. Данные кадра 4, прибавленные к данным кадров f1, f2 и f3, уже превысили порог Вс, но еще не превысили порога Вс+Ве, поэтому кадр f4 также ушел дальше, но уже с признаком DE=1. Данные кадра f5, прибавленные к данным предыдущих кадров, превысили порог Вс+Ве, поэтому этот кадр был удален.