
- •Кафедра теории вероятностей и математической статистики
- •Теория вероятностей Введение в теорию вероятностей Предмет теории вероятностей
- •Возникновение и развитие теории вероятностей До появления аксиоматики Колмогорова
- •В наше время
- •Необходимость теории вероятностей как науки
- •Возможность анализа случайных явлений
- •Расчет шансов и прогнозирование последствий
- •Примеры практических задач, при решении которых применяется теория вероятностей
- •Элементарный исход
- •Пространство элементарных исходов
- •Советы по построению пространства элементарных исходов.
- •Определения Подмножества
- •Операции над подмножествами
- •Случайные события
- •Вероятностное пространство
- •Парадокс определения вероятностного пространства
- •Независимые события
- •Дискретная вероятностная модель
- •Конечное пространство элементарных исходов
- •Классическая вероятностная модель
- •Связь классической вероятностной модели с комбинаторикой
- •Основная формула комбинаторики
- •Факториал
- •Урновая схема
- •Общее определение вероятности для экспериментов с конечным или счетным числом исходов
- •Дискретное распределение и вероятность
- •Равномерное распределение - классическая вероятностная модель
- •Биномиальное распределение – схема Бернулли
- •Мультиномиальное распределение – схема бросания частиц по ячейкам
- •Геометрическое распределение – испытания до первого успеха
- •Распределение Паскаля – испытания до m-того успеха
- •Пуассоновское распределение - теорема Пуассона
- •Теорема Пуассона.
- •Независимость событий и условная вероятность. Построение моделей.
- •Независимость Различие между независимостью попарно и в совокупности. Пример Бернштейна
- •Использование понятия независимости для построения моделей. Произведение вероятностных пространств.
- •Примеры построения моделей.
- •Расчет надежности при параллельном соединении элементов.
- •Расчет надежности при последовательном соединении элементов
- •Расчет надежности сложной системы.
- •Замечания к примерам.
- •Условная вероятность
- •Урновая схема
- •Марковская зависимость
- •Формула полной вероятности и формула Байеса
- •Случайные величины
- •Отображения вероятностных пространств
- •Случайная величина
- •Борелевская сигма-алгебра
- •Определение случайной величины
- •Распределения случайных величин и векторов
- •Геометрическое распределение
- •Мера Лебега на прямой.
- •Плотность распределения
- •Вероятностный смысл плотности распределения
- •Бета-распределение на отрезке [0,1]
- •Смеси распределений.
- •Нормальное (гауссовское) распределение.
- •Экспоненциальное (показательное) распределение.
- •Гамма-распределение.
- •Построение меры в конечномерном пространстве Борелевская сигма-алгебра в конечномерном пространстве
- •Определение случайного вектора
- •Мера Лебега в конечномерном пространстве
- •Мера Лебега на квадрате - Задача о встрече
- •Независимые случайные величины
- •Многомерное нормальное распределение
- •Числовые характеристики случайных величин и векторов
- •Интеграл Лебега – математическое ожидание
- •Свойства интеграла Лебега (математического ожидания)
- •Неравенства Неравенство Маркова
- •Неравенство Чебышева. Дисперсия
- •Неравенство Коши-Буняковского-Шварца. Ковариация
- •Неравенство Йенсена.Выпуклые функции
- •Моменты
- •Вычисление математического ожидания.
- •Теорема Лебега о замене переменных
- •Вычисление интеграла Лебега на прямой.
- •Вычисление маргинальных плотностей
- •Вычисление числовых характеристик важных распределений.
- •Суммирование независимых случайных величин
- •Сходимость последовательностей случайных величин и их распределений
- •Закон больших чисел в форме Бернулли
- •Предельные теоремы теории вероятностей
- •Закон больших чисел в форме Чебышева
- •Определение условного распределения и условной плотности Условное распределение
Элементарный исход
Элементарный исход является первичным понятием, и пояснить его можно только на примере. Элементарный исход является мельчайшей неделимой единицей описания опыта, мельчайшим случайным событием. Предполагается, что у одного опыта одновременно не может произойти два разных элементарных исхода. Например,
1. Опыт: бросание монеты
Элементарные исходы: герб, решка – всего два различных исхода
2. Опыт: бросание игральной кости
Элементарные исходы, 1 вариант: число очков на верхней грани –6 исходов
Элементарные исходы, 2 вариант: выпала четная или нечетная грань –2 исхода
3.Опыт: бросание двух игральных костей
3.1 Элементарные исходы, 1 вариант: выпало в сумме 6 очков или не выпало –2 исхода
3.2 Элементарные исходы, 2 вариант: выпало в сумме 7 очков или не выпало –2 исхода
3.3 Элементарные исходы, 3 вариант: сумма выпавших очков – 11 исходов
3.4 Элементарные исходы, 4 вариант: числа очков на костях без различения игральных костей [{1,1},{1,2},{1,3},{1,4},{1,5},{1,6},{2,2},{2,3},{2,4},{2,5},{2,6}, {3,3}…] – 21 исход
3.5 Элементарные исходы, 5 вариант: числа очков на костях без c различением игральных костей [(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…] –36 исходов
Пространство элементарных исходов
Мощность множества измеряется не в лошадиных силах, а в кардинальных числах. Бывают множества с конечной, счетной, континуум мощностью и даже больше. Если элементы множества можно пересчитать, но оно не конечное, то оно счетное. |
Множество элементарных исходов опыта в теории вероятностей называется пространством элементарных исходов. Элементарные исходы являются элементами (точками) этого множества. В предыдущих примерах видно, что одному реальному опыту можно сопоставить несколько описаний пространства элементарных исходов. Таким образом, для описания экспериментов в качестве первичных математических понятий используются множества. В своей общей части теория вероятностей не использует никаких специфических свойств элементарных исходов и множеств, кроме числа элементов в них или их мощности. Поэтому любые два пространства элементарных исходов с одинаковым числом элементов или одинаковой мощностью с точки зрения теории вероятностей эквивалентны. Например, в опыте с бросанием монеты мы можем выбрать в качестве исходов слова "герб" и "решка" или числа "0" и "1". Обозначается пространство элементарных исходов обычно так: а сам элементарный исход так Можно записать отношение между пространством элементарных исходов и элементарными исходами так |
Советы по построению пространства элементарных исходов.
Имейте в виду задачу, которую вы хотите решить - то случайное событие, вероятность которого вам необходимо найти, должно описываться с помощью указания элементарных исходов, приводящих к этому событию.
На первых порах старайтесь вводить наиболее детальное описание опыта, – потом начнете понимать, в каких случаях можно, без ущерба для конечного результата, упростить модель.
Между разными подходящими моделями предпочтительнее выглядит модель, в которой элементарные исходы симметричны и равновероятны.
Очень удобно выбирать элементарные исходы в виде векторов, размерность которых равна количеству различных случайных факторов (источников) в случайном явлении, а координаты которых соответствуют различным вариантам значений этих факторов. Например, при бросании двух костей элементарный исход имеет размерность 2 и каждая координата 6 значений. При одновременном бросании монеты и кости вектор имеет размерность 2, первая координата 2 значения, вторая – 6 (или наоборот). Если бросаем 10 монет, то в качестве пространства элементарных исходов можно взять множество различных двоичных векторов размерности 10 из нулей и единиц.