
- •Кафедра теории вероятностей и математической статистики
- •Теория вероятностей Введение в теорию вероятностей Предмет теории вероятностей
- •Возникновение и развитие теории вероятностей До появления аксиоматики Колмогорова
- •В наше время
- •Необходимость теории вероятностей как науки
- •Возможность анализа случайных явлений
- •Расчет шансов и прогнозирование последствий
- •Примеры практических задач, при решении которых применяется теория вероятностей
- •Элементарный исход
- •Пространство элементарных исходов
- •Советы по построению пространства элементарных исходов.
- •Определения Подмножества
- •Операции над подмножествами
- •Случайные события
- •Вероятностное пространство
- •Парадокс определения вероятностного пространства
- •Независимые события
- •Дискретная вероятностная модель
- •Конечное пространство элементарных исходов
- •Классическая вероятностная модель
- •Связь классической вероятностной модели с комбинаторикой
- •Основная формула комбинаторики
- •Факториал
- •Урновая схема
- •Общее определение вероятности для экспериментов с конечным или счетным числом исходов
- •Дискретное распределение и вероятность
- •Равномерное распределение - классическая вероятностная модель
- •Биномиальное распределение – схема Бернулли
- •Мультиномиальное распределение – схема бросания частиц по ячейкам
- •Геометрическое распределение – испытания до первого успеха
- •Распределение Паскаля – испытания до m-того успеха
- •Пуассоновское распределение - теорема Пуассона
- •Теорема Пуассона.
- •Независимость событий и условная вероятность. Построение моделей.
- •Независимость Различие между независимостью попарно и в совокупности. Пример Бернштейна
- •Использование понятия независимости для построения моделей. Произведение вероятностных пространств.
- •Примеры построения моделей.
- •Расчет надежности при параллельном соединении элементов.
- •Расчет надежности при последовательном соединении элементов
- •Расчет надежности сложной системы.
- •Замечания к примерам.
- •Условная вероятность
- •Урновая схема
- •Марковская зависимость
- •Формула полной вероятности и формула Байеса
- •Случайные величины
- •Отображения вероятностных пространств
- •Случайная величина
- •Борелевская сигма-алгебра
- •Определение случайной величины
- •Распределения случайных величин и векторов
- •Геометрическое распределение
- •Мера Лебега на прямой.
- •Плотность распределения
- •Вероятностный смысл плотности распределения
- •Бета-распределение на отрезке [0,1]
- •Смеси распределений.
- •Нормальное (гауссовское) распределение.
- •Экспоненциальное (показательное) распределение.
- •Гамма-распределение.
- •Построение меры в конечномерном пространстве Борелевская сигма-алгебра в конечномерном пространстве
- •Определение случайного вектора
- •Мера Лебега в конечномерном пространстве
- •Мера Лебега на квадрате - Задача о встрече
- •Независимые случайные величины
- •Многомерное нормальное распределение
- •Числовые характеристики случайных величин и векторов
- •Интеграл Лебега – математическое ожидание
- •Свойства интеграла Лебега (математического ожидания)
- •Неравенства Неравенство Маркова
- •Неравенство Чебышева. Дисперсия
- •Неравенство Коши-Буняковского-Шварца. Ковариация
- •Неравенство Йенсена.Выпуклые функции
- •Моменты
- •Вычисление математического ожидания.
- •Теорема Лебега о замене переменных
- •Вычисление интеграла Лебега на прямой.
- •Вычисление маргинальных плотностей
- •Вычисление числовых характеристик важных распределений.
- •Суммирование независимых случайных величин
- •Сходимость последовательностей случайных величин и их распределений
- •Закон больших чисел в форме Бернулли
- •Предельные теоремы теории вероятностей
- •Закон больших чисел в форме Чебышева
- •Определение условного распределения и условной плотности Условное распределение
Случайные величины
В данной главе рассматриваются отображения одного вероятностного пространства в другое. Важнейшим случаем такого отображения является отображение основного пространства в пространство действительных чисел или векторов. Возникающие при этом случайные величины, случайные вектора и их распределения являются одними из основных понятий теории вероятностей.
Отображения вероятностных пространств
Дадим формальное определение отображения вероятностного пространства в измеримое пространство
Пусть
основное вероятностное пространство
измеримое пространство (т.е пара множество и сигма-алгебра)
поточечное отображение (функция), ставящее в соответствие каждому элементарному исходу основного пространства точку x пространства X.
Отображение
называется измеримое отображение, если
множество (прообраз B)
Покажите, что так определенная функция будет вероятностью |
Измеримость отображения гарантирует, что функция |
определенная на сигма-алгебре
по формуле
будет вероятностью.
Эта функция называется распределение, индуцированное отображением
или просто распределение
Таким образом с каждым отображением
связано новое вероятностное пространство
.
Случайная величина
Случайной величиной называется измеримое отображение основного вероятностного пространства в множество действительных чисел. С практической точки зрения случайная величина это числовая характеристика эксперимента. Чтобы дать корректное определение случайной величины, необходимо указать подходящую сигма-алгебру на пространстве действительных чисел. В дальнейшем пространство действительных чисел будем обозначать
а пространство векторов с n действительными координатами
Борелевская сигма-алгебра
Так как сигма-алгебра на пространстве действительных чисел нужна нам для того, чтобы определить на ней вероятность, то естественно включить в эту сигма-алгебру побольше практически важных множеств. Обозначим
минимальную (которая содержится во всех других) сигма-алгебру, содержащую всевозможные интервалы вида
Эта сигма-алгебра называется борелевская сигма-алгебра). Она содержит все практически важные множества действительной прямой. Множество, принадлежащее борелевской сигма-алгебре называется борелевское множество.
Определение случайной величины
Пусть
основное вероятностное пространство
действительная прямая с борелевской сигма-алгеброй
поточечное измеримое отображение, ставящее в соответствие каждому элементарному исходу основного пространства действительное число. Это отображение называется случайная величина.
Вероятностная мера, определенная на борелевской сигма-алгебре по формуле
называется распределение случайной величины.
Борелевская функция
Заметим, что в определении случайной величины не участвует вероятность. Поэтому в этом определении не требуется указывать, какая вероятность действует на основном пространстве. |
Случайная величина, заданная на основном пространстве, которое является действительной прямой с борелевской сигма-алгеброй, называется борелевская функция. |
Примеры борелевских функций
Любая непрерывная функция является борелевской.
Функции
тоже являются борелевскими.
Если f и g – две борелевские функции, то
тоже борелевские, т.к.
Примеры случайных величин
Индикатор события
Пусть A – случайное событие. Тогда функция
является случайной величиной и называется индикатор события A
Верно и обратное – любая случайная величина принимающая значения 0 или 1 является индикатором некоторого события A.
Часто, для краткости, будем пользоваться обозначением
Простая случайная величина
Пусть
полная группа событий.
Случайная величина
называется простая случайная величина.
Верно и обратное – любая случайная величина принимающая конечное число значений
является простой .
Дискретная случайная величина
Пусть
полная группа событий.
Случайная величина
называется дискретная случайная величина.
|
Верно и обратное – любая случайная величина принимающая конечное или счетное число значений является дискретной. |
Случайный вектор
Аналогично одномерному случаю можно определить соответствующие понятия для пространства векторов размерности n. Следует только заменить интервалы на действительной оси прямоугольниками (произведениями интервалов) в пространстве векторов. Получающаяся при этом сигма-алгебра
называется борелевской сигма-алгеброй в пространстве
Аналогично даются определения борелевского множества и борелевской функции (как отображения из пространства векторов в пространство действительных чисел). При этом определении координаты случайного вектора будут случайными величинами.